Enhanced splenomegaly and severe liver inflammation in haptoglobin/hemopexin double-null mice after acute hemolysis
- PMID:12393471
- DOI: 10.1182/blood-2002-04-1270
Enhanced splenomegaly and severe liver inflammation in haptoglobin/hemopexin double-null mice after acute hemolysis
Abstract
Intravascular hemolysis is associated with several pathologic conditions that include hemoglobinopathies, trauma, malaria, and bacterial infections. Among plasma-protective proteins against oxidative damage caused by red blood cell rupture, haptoglobin and hemopexin are thought to play a crucial role. Haptoglobin and hemopexin, by binding with high-affinity hemoglobin and heme, respectively, exert an antioxidant action by preventing heme-catalyzed free radical production. Moreover, these proteins prevent iron loss by inhibiting glomerular filtration of hemoglobin and heme diffusion through plasma membranes. Analysis of single-null mice demonstrated the antioxidant action of haptoglobin and hemopexin in vivo and suggests that the 2 proteins cooperate in the resolution of hemolytic stress. To evaluate the physiological relevance of the haptoglobin-hemopexin system and the principal targets of its action, we generated haptoglobin-hemopexin double-knockout mice and analyzed them under basal conditions and after acute hemolysis. Whereas haptoglobin-hemopexin double-null mice displayed no obvious alteration in phenotype under basal conditions, nonlethal hemolytic stress in these animals led to pronounced splenomegaly as well as liver inflammation and fibrosis. These data demonstrate that haptoglobin and hemopexin together are essential for protection from splenomegaly and liver fibrosis resulting from intravascular hemolysis.
Similar articles
- Divergent roles of haptoglobin and hemopexin deficiency for disease progression of Shiga-toxin-induced hemolytic-uremic syndrome in mice.Pirschel W, Mestekemper AN, Wissuwa B, Krieg N, Kröller S, Daniel C, Gunzer F, Tolosano E, Bauer M, Amann K, Heinemann SH, Coldewey SM.Pirschel W, et al.Kidney Int. 2022 Jun;101(6):1171-1185. doi: 10.1016/j.kint.2021.12.024. Epub 2022 Jan 11.Kidney Int. 2022.PMID:35031328
- Microarray and large-scale in silico--based identification of genes functionally related to Haptoglobin and/or Hemopexin.Fagoonee S, Di Cunto F, Vozzi D, Volinia S, Pellegrino M, Gasparini P, Silengo L, Altruda F, Tolosano E.Fagoonee S, et al.DNA Cell Biol. 2006 Jun;25(6):323-30. doi: 10.1089/dna.2006.25.323.DNA Cell Biol. 2006.PMID:16792502
- Endothelial dysfunction inhibits the ability of haptoglobin to prevent hemoglobin-induced hypertension.Graw JA, Yu B, Rezoagli E, Warren HS, Buys ES, Bloch DB, Zapol WM.Graw JA, et al.Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1120-H1127. doi: 10.1152/ajpheart.00851.2016. Epub 2017 Mar 17.Am J Physiol Heart Circ Physiol. 2017.PMID:28314763Free PMC article.
- Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging.Nielsen MJ, Moestrup SK.Nielsen MJ, et al.Blood. 2009 Jul 23;114(4):764-71. doi: 10.1182/blood-2009-01-198309. Epub 2009 Apr 20.Blood. 2009.PMID:19380867Review.
- Hemopexin: a review of biological aspects and the role in laboratory medicine.Delanghe JR, Langlois MR.Delanghe JR, et al.Clin Chim Acta. 2001 Oct;312(1-2):13-23. doi: 10.1016/s0009-8981(01)00586-1.Clin Chim Acta. 2001.PMID:11580905Review.
Cited by
- Targeting the redox balance in inflammatory skin conditions.Wagener FA, Carels CE, Lundvig DM.Wagener FA, et al.Int J Mol Sci. 2013 Apr 26;14(5):9126-67. doi: 10.3390/ijms14059126.Int J Mol Sci. 2013.PMID:23624605Free PMC article.Review.
- The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging.Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK.Thomsen JH, et al.Oxid Med Cell Longev. 2013;2013:523652. doi: 10.1155/2013/523652. Epub 2013 May 27.Oxid Med Cell Longev. 2013.PMID:23781295Free PMC article.Review.
- Scavenging of Labile Heme by Hemopexin Is a Key Checkpoint in Cancer Growth and Metastases.Canesin G, Di Ruscio A, Li M, Ummarino S, Hedblom A, Choudhury R, Krzyzanowska A, Csizmadia E, Palominos M, Stiehm A, Ebralidze A, Chen SY, Bassal MA, Zhao P, Tolosano E, Hurley L, Bjartell A, Tenen DG, Wegiel B.Canesin G, et al.Cell Rep. 2020 Sep 22;32(12):108181. doi: 10.1016/j.celrep.2020.108181.Cell Rep. 2020.PMID:32966797Free PMC article.
- Transcriptional profiling of bone marrow stromal cells in response to Porphyromonas gingivalis secreted products.Reddi D, Belibasakis GN.Reddi D, et al.PLoS One. 2012;7(8):e43899. doi: 10.1371/journal.pone.0043899. Epub 2012 Aug 24.PLoS One. 2012.PMID:22937121Free PMC article.
- Role of Toll-like receptor 4 in intravascular hemolysis-mediated injury.Vázquez-Carballo C, Herencia C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Morgado-Pascual JL, Opazo-Rios L, González-Guerrero C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA.Vázquez-Carballo C, et al.J Pathol. 2022 Nov;258(3):236-249. doi: 10.1002/path.5995. Epub 2022 Aug 26.J Pathol. 2022.PMID:35903022Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Molecular Biology Databases