Discovering statistically significant biclusters in gene expression data
- PMID:12169541
- DOI: 10.1093/bioinformatics/18.suppl_1.s136
Discovering statistically significant biclusters in gene expression data
Abstract
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under plausible assumptions, our algorithm is polynomial and is guaranteed to find the most significant biclusters. We tested our method on a collection of yeast expression profiles and on a human cancer dataset. Cross validation results show high specificity in assigning function to genes based on their biclusters, and we are able to annotate in this way 196 uncharacterized yeast genes. We also demonstrate how the biclusters lead to detecting new concrete biological associations. In cancer data we are able to detect and relate finer tissue types than was previously possible. We also show that the method outperforms the biclustering algorithm of Cheng and Church (2000).
Similar articles
- Discovering biclusters in gene expression data based on high-dimensional linear geometries.Gan X, Liew AW, Yan H.Gan X, et al.BMC Bioinformatics. 2008 Apr 23;9:209. doi: 10.1186/1471-2105-9-209.BMC Bioinformatics. 2008.PMID:18433477Free PMC article.
- Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization.Cheng KO, Law NF, Siu WC, Liew AW.Cheng KO, et al.BMC Bioinformatics. 2008 Apr 23;9:210. doi: 10.1186/1471-2105-9-210.BMC Bioinformatics. 2008.PMID:18433478Free PMC article.
- Discovery of error-tolerant biclusters from noisy gene expression data.Gupta R, Rao N, Kumar V.Gupta R, et al.BMC Bioinformatics. 2011 Nov 24;12 Suppl 12(Suppl 12):S1. doi: 10.1186/1471-2105-12-S12-S1.BMC Bioinformatics. 2011.PMID:22168285Free PMC article.
- Recent patents on biclustering algorithms for gene expression data analysis.Liew AW, Law NF, Yan H.Liew AW, et al.Recent Pat DNA Gene Seq. 2011 Aug;5(2):117-25. doi: 10.2174/187221511796392097.Recent Pat DNA Gene Seq. 2011.PMID:21529337Review.
- Biclustering on expression data: A review.Pontes B, Giráldez R, Aguilar-Ruiz JS.Pontes B, et al.J Biomed Inform. 2015 Oct;57:163-80. doi: 10.1016/j.jbi.2015.06.028. Epub 2015 Jul 6.J Biomed Inform. 2015.PMID:26160444Review.
Cited by
- Identifying Mitochondrial-Related Genes NDUFA10 and NDUFV2 as Prognostic Markers for Prostate Cancer through Biclustering.Zhang H, Shao Y, Chen W, Chen X.Zhang H, et al.Biomed Res Int. 2021 May 22;2021:5512624. doi: 10.1155/2021/5512624. eCollection 2021.Biomed Res Int. 2021.PMID:34124242Free PMC article.
- A parameter free relative density based biclustering method for identifying non-linear feature relations.Jain N, Ghosh S, Ghosh A.Jain N, et al.Heliyon. 2024 Jul 20;10(15):e34736. doi: 10.1016/j.heliyon.2024.e34736. eCollection 2024 Aug 15.Heliyon. 2024.PMID:39157398Free PMC article.
- GEMS: a web server for biclustering analysis of expression data.Wu CJ, Kasif S.Wu CJ, et al.Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W596-9. doi: 10.1093/nar/gki469.Nucleic Acids Res. 2005.PMID:15980544Free PMC article.
- Putting genetic interactions in context through a global modular decomposition.Bellay J, Atluri G, Sing TL, Toufighi K, Costanzo M, Ribeiro PS, Pandey G, Baller J, VanderSluis B, Michaut M, Han S, Kim P, Brown GW, Andrews BJ, Boone C, Kumar V, Myers CL.Bellay J, et al.Genome Res. 2011 Aug;21(8):1375-87. doi: 10.1101/gr.117176.110. Epub 2011 Jun 29.Genome Res. 2011.PMID:21715556Free PMC article.
- On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types.Zhang Y, Phillips CA, Rogers GL, Baker EJ, Chesler EJ, Langston MA.Zhang Y, et al.BMC Bioinformatics. 2014 Apr 15;15:110. doi: 10.1186/1471-2105-15-110.BMC Bioinformatics. 2014.PMID:24731198Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases