Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

Comparative Study
.2002 Apr;23(7-8):1033-44.
doi: 10.1002/1522-2683(200204)23:7/8<1033::AID-ELPS1033>3.0.CO;2-7.

Comparison of RNA, single-stranded DNA and double-stranded DNA behavior during capillary electrophoresis in semidilute polymer solutions

Affiliations
Comparative Study

Comparison of RNA, single-stranded DNA and double-stranded DNA behavior during capillary electrophoresis in semidilute polymer solutions

Todor I Todorov et al. Electrophoresis.2002 Apr.

Abstract

We present a study of the separation of RNA, single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in semidilute linear hydroxyethylcellulose (HEC) solution. Our results strive to provide a better understanding of the mechanisms of nucleic acid migration during electrophoresis in polymer solutions under native and denaturing conditions. From a study of the dependence of mobility on chain length and applied electric field, we found that RNA and ssDNA show better separation and higher resolution over a larger range of sizes compared to dsDNA. In addition, RNA reptation without orientation extends to longer chain lengths in comparison to ssDNA, possibly as a result of different type of short-lived secondary structure formations. Such a comparative study between nucleic acid capillary electrophoresis helps to optimize RNA separation and provides better understanding of RNA migration mechanisms in semidilute polymer solutions under denaturing conditions.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp