Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation
- PMID:11850397
- PMCID: PMC1084010
- DOI: 10.1093/embo-reports/kvf037
Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation
Abstract
The breast cancer predisposition gene BRCA2 encodes a protein involved in the repair of DNA double-strand breaks, which arise spontaneously and following exposure to ionizing radiation (IR). To develop a mouse model that examines the effect of BRCA2 mutation and IR exposure on in vivo somatic mutation acquisition, we crossed mice with targeted disruption of Brca2 with a LacZ transgenic mutation reporter strain. Loss of both wild-type Brca2 alleles caused a 2.3-fold increase, equivalent to an extra 100 mutations per cell, in the in vivo acquisition of spontaneous somatic mutation by 2 weeks gestation. IR (4 Gy) had a disproportionate effect on animals homozygous for Brca2 disruption, inducing 3.4-fold more mutations compared with wild-type animals. These data provide the first evidence that loss of Brca2 increases in vivo somatic mutation acquisition and synergizes with IR exposure, with potential attendant implications for mammographic screening and therapeutic IR in mutation carriers.
Figures



Similar articles
- Brca2 (XRCC11) deficiency results in enhanced mutagenesis.Kraakman-van der Zwet M, Wiegant WW, Zdzienicka MZ.Kraakman-van der Zwet M, et al.Mutagenesis. 2003 Nov;18(6):521-5. doi: 10.1093/mutage/geg032.Mutagenesis. 2003.PMID:14614187
- Spontaneous and irradiation-induced tumor susceptibility in BRCA2 germline mutant mice and cooperative effects with a p53 germline mutation.McAllister KA, Houle CD, Malphurs J, Ward T, Collins NK, Gersch W, Wharey L, Seely JC, Betz L, Bennett LM, Wiseman RW, Davis BJ.McAllister KA, et al.Toxicol Pathol. 2006;34(2):187-98. doi: 10.1080/01926230600611794.Toxicol Pathol. 2006.PMID:16546942
- Cell cycle and genetic background dependence of the effect of loss of BRCA2 on ionizing radiation sensitivity.Tutt A, Connor F, Bertwistle D, Kerr P, Peacock J, Ross G, Ashworth A.Tutt A, et al.Oncogene. 2003 May 15;22(19):2926-31. doi: 10.1038/sj.onc.1206522.Oncogene. 2003.PMID:12771943
- Diagnostic and therapeutic ionizing radiation and the risk of a first and second primary breast cancer, with special attention for BRCA1 and BRCA2 mutation carriers: a critical review of the literature.Drooger JC, Hooning MJ, Seynaeve CM, Baaijens MH, Obdeijn IM, Sleijfer S, Jager A.Drooger JC, et al.Cancer Treat Rev. 2015 Feb;41(2):187-96. doi: 10.1016/j.ctrv.2014.12.002. Epub 2014 Dec 8.Cancer Treat Rev. 2015.PMID:25533736Review.
- Chromosomal mutagen sensitivity associated with mutations in BRCA genes.Speit G, Trenz K.Speit G, et al.Cytogenet Genome Res. 2004;104(1-4):325-32. doi: 10.1159/000077511.Cytogenet Genome Res. 2004.PMID:15162060Review.
Cited by
- Tumour suppressor mechanisms in the control of chromosome stability: insights from BRCA2.Venkitaraman AR.Venkitaraman AR.Mol Cells. 2014 Feb;37(2):95-9. doi: 10.14348/molcells.2014.2346. Epub 2014 Feb 19.Mol Cells. 2014.PMID:24598993Free PMC article.Review.
- BRCA2 and TP53 collaborate in tumorigenesis in zebrafish.Shive HR, West RR, Embree LJ, Golden CD, Hickstein DD.Shive HR, et al.PLoS One. 2014 Jan 29;9(1):e87177. doi: 10.1371/journal.pone.0087177. eCollection 2014.PLoS One. 2014.PMID:24489863Free PMC article.
- BRE/BRCC45 regulates CDC25A stability by recruiting USP7 in response to DNA damage.Biswas K, Philip S, Yadav A, Martin BK, Burkett S, Singh V, Babbar A, North SL, Chang S, Sharan SK.Biswas K, et al.Nat Commun. 2018 Feb 7;9(1):537. doi: 10.1038/s41467-018-03020-6.Nat Commun. 2018.PMID:29416040Free PMC article.
- A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage.Inanç B, Dodson H, Morrison CG.Inanç B, et al.Mol Biol Cell. 2010 Nov 15;21(22):3866-77. doi: 10.1091/mbc.E10-02-0124. Epub 2010 Sep 22.Mol Biol Cell. 2010.PMID:20861312Free PMC article.
- Epigenetic field defects in progression to cancer.Bernstein C, Nfonsam V, Prasad AR, Bernstein H.Bernstein C, et al.World J Gastrointest Oncol. 2013 Mar 15;5(3):43-9. doi: 10.4251/wjgo.v5.i3.43.World J Gastrointest Oncol. 2013.PMID:23671730Free PMC article.
References
- Bennett L.M. (1999) Breast cancer: genetic predisposition and exposure to radiation. Mol. Carcinog., 26, 143–149. - PubMed
- Boerrigter M.E., Dolle, M.E., Martus, H.J., Gossen, J.A. and Vijg, J. (1995) Plasmid-based transgenic mouse model for studying in vivo mutations. Nature, 377, 657–659. - PubMed
- Burke W. et al. (1997) Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA, 277, 997–1003. - PubMed
- Connor F., Bertwistle, D., Mee, P.J., Ross, G.M., Swift, S., Grigorieva, E., Tybulewicz, V.L. and Ashworth, A. (1997) Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet., 17, 423–430. - PubMed
- Dolle M.E., Martus, H.J., Gossen, J.A., Boerrigter, M.E. and Vijg, J. (1996) Evaluation of a plasmid-based transgenic mouse model for detecting in vivo mutations. Mutagenesis, 11, 111–118. - PubMed
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous