Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass
- PMID:11842165
- PMCID: PMC148924
- DOI: 10.1104/pp.010686
Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass
Abstract
Selenocyanate (SeCN(-)) is a major contaminant in the effluents from some oil refineries, power plants, and in mine drainage water. In this study, we determined the potential of Indian mustard (Brassica juncea) and muskgrass (a macroalga, Chara canescens) for SeCN(-) phytoremediation in upland and wetland situations, respectively. The tolerance of Indian mustard to toxic levels of SeCN(-) was similar to or higher than other toxic forms of Se. Indian mustard treated with 20 microM SeCN(-) removed 30% (w/v) of the Se supplied in 5 d, accumulating 554 and 86 microg of Se g(-1) dry weight in roots and shoots, respectively. Under similar conditions, muskgrass removed approximately 9% (w/v) of the Se supplied as SeCN(-) and accumulated 27 microg of Se g(-1) dry weight. A biochemical pathway for SeCN(-) degradation was proposed for Indian mustard. Indian mustard and muskgrass efficiently degraded SeCN(-) as none of the Se accumulated by either organism remained in this form. Indian mustard accumulated predominantly organic Se, whereas muskgrass contained Se mainly as selenite and organic Se forms. Indian mustard produced volatile Se from SeCN(-) in the form of less toxic dimethylselenide. Se volatilization by Indian mustard accounted for only 0.7% (w/v) of the SeCN(-) removed, likely because the biochemical steps in the production of dimethylselenide from organic Se were rate limiting. Indian mustard is promising for the phytoremediation of SeCN(-) -contaminated soil and water because of its remarkable abilities to phytoextract SeCN(-) and degrade all the accumulated SeCN(-) to other Se forms.
Figures





Similar articles
- Evaluation of the macroalga, muskgrass, for the phytoremediation of selenium-contaminated agricultural drainage water by microcosms.Lin ZQ, de Souza M, Pickering IJ, Terry N.Lin ZQ, et al.J Environ Qual. 2002 Nov-Dec;31(6):2104-10. doi: 10.2134/jeq2002.2104.J Environ Qual. 2002.PMID:12469862
- Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea.Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EA.Van Huysen T, et al.Planta. 2003 Nov;218(1):71-8. doi: 10.1007/s00425-003-1070-z. Epub 2003 Jul 9.Planta. 2003.PMID:14618405
- X-ray absorption spectroscopy study shows that the rapid selenium volatilizer, pickleweed (Salicornia bigelovii Torr.), reduces selenate to organic forms without the aid of microbes.Lee A, Lin ZQ, Pickering IJ, Terry N.Lee A, et al.Planta. 2001 Oct;213(6):977-80. doi: 10.1007/s004250100574.Planta. 2001.PMID:11722134
- Selenium accumulation and metabolism in algae.Schiavon M, Ertani A, Parrasia S, Vecchia FD.Schiavon M, et al.Aquat Toxicol. 2017 Aug;189:1-8. doi: 10.1016/j.aquatox.2017.05.011. Epub 2017 May 25.Aquat Toxicol. 2017.PMID:28554051Review.
- The green technology of selenium phytoremediation.Bañuelos GS.Bañuelos GS.Biofactors. 2001;14(1-4):255-60. doi: 10.1002/biof.5520140131.Biofactors. 2001.PMID:11568462Review.
Cited by
- LDH-TiO2 Composite for Selenocyanate (SeCN-) Photocatalytic Degradation: Characterization, Treatment Efficiency, Reaction Intermediates and Modeling.Hussaini M, Vohra M.Hussaini M, et al.Nanomaterials (Basel). 2022 Jun 14;12(12):2035. doi: 10.3390/nano12122035.Nanomaterials (Basel). 2022.PMID:35745375Free PMC article.
- Selenium volatilization in plants, microalgae, and microorganisms.Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y.Wang F, et al.Heliyon. 2024 Feb 11;10(4):e26023. doi: 10.1016/j.heliyon.2024.e26023. eCollection 2024 Feb 29.Heliyon. 2024.PMID:38390045Free PMC article.Review.
- Selenium Interactions with Algae: Chemical Processes at Biological Uptake Sites, Bioaccumulation, and Intracellular Metabolism.Ponton DE, Graves SD, Fortin C, Janz D, Amyot M, Schiavon M.Ponton DE, et al.Plants (Basel). 2020 Apr 19;9(4):528. doi: 10.3390/plants9040528.Plants (Basel). 2020.PMID:32325841Free PMC article.Review.
- Reactions of hypobromous acid with dimethyl selenide, dimethyl diselenide and other organic selenium compounds: kinetics and product formation.Müller E, von Gunten U, Tolu J, Bouchet S, Winkel LHE.Müller E, et al.Environ Sci (Camb). 2024 Jan 8;10(3):620-630. doi: 10.1039/d3ew00787a. eCollection 2024 Mar 1.Environ Sci (Camb). 2024.PMID:38434173Free PMC article.
- Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice.Zhang L, Chu C.Zhang L, et al.Rice (N Y). 2022 Jun 15;15(1):30. doi: 10.1186/s12284-022-00572-6.Rice (N Y). 2022.PMID:35701545Free PMC article.Review.
References
- Abrams MM, Shennan C, Zasoski RJ, Burau RG. Selenomethionine uptake by wheat seedlings. Agron J. 1990;82:1127–1130.
- Aichi M, Nishida I, Omata T. Molecular cloning and characterization of a cDNA encoding cyanase from Arabidopsis thaliana. Plant Cell Physiol Suppl. 1998;39:S135.
- Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM. Biofumigation: isothiocyanates released from Brassicaroots inhibit growth of the take-all fungus. Plant Soil. 1994;162:107–112.
- Attieh J, Kleppinger-Sparace KF, Nunes C, Sparace SA, Saini HS. Evidence implicating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis products in Brassica oleraceaL. Plant Cell Environ. 2000;23:165–174.
- Bañuelos G, Pflaum T. Determination of selenium in plant tissue with optimal digestion conditions. Commun Soil Sci Plant Anal. 1990;21:1717–1726.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources