Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

.2002 Apr;60(1):86-93.
doi: 10.1002/jbm.10042.

Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds

Affiliations

Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds

Brenda K Mann et al. J Biomed Mater Res.2002 Apr.

Abstract

The effects of cell adhesion peptides (RGDS, KQAGDV, VAPG) on vascular smooth muscle cells grown on modified surfaces and in tissue-engineering scaffolds were examined. Cells were more strongly adhered to surfaces modified with adhesive ligands than to control surfaces (no ligand or a nonadhesive ligand). Cell migration was higher on surfaces with 0.2 nmol/cm(2) of adhesive ligand than on control surfaces, but it was lower on surfaces with 2.0 nmol/cm(2) of adhesive ligand than it was on control surfaces. Further, cell proliferation was lower on adhesive surfaces than it was on control surfaces, and it decreased as the ligand density increased. Similarly, in the peptide-grafted hydrogel scaffolds, cell proliferation was lower in scaffolds containing the adhesive peptides than it was in control scaffolds. After 7 days of culture, more collagen per cell was produced in control scaffolds than in scaffolds containing adhesive peptides. In addition, collagen production decreased in the scaffolds as the ligand concentration increased. While modification of a surface or scaffold material with adhesive ligands initially increases cell attachment, it may be necessary to optimize cell adhesion simultaneously with proliferation, migration, and matrix production.

Copyright 2002 John Wiley & Sons, Inc., J Biomed Mater Res 60: 86-93, 2002

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp