Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

.2002 Feb;87(2):889-900.
doi: 10.1152/jn.00135.2001.

Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop

Affiliations
Free article

Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop

Xiao-Jing Wang. J Neurophysiol.2002 Feb.
Free article

Abstract

Hippocampal theta (4-10 Hz) oscillation represents a well-known brain rhythm implicated in spatial cognition and memory processes. Its cellular mechanisms remain a matter of debate, and previous computational work has focused mostly on mechanisms intrinsic to the hippocampus. On the other hand, experimental data indicate that GABAergic cells in the medial septum play a pacemaker role for the theta rhythm. We have used biophysical modeling to address two major questions raised by the septal pacemaker hypothesis: what is the ion channel mechanism for the single-cell pacemaker behavior and how do these cells become synchronized? Our model predicts that theta oscillations of septal GABAergic cells depend critically on a low-threshold, slowly inactivating potassium current. Network simulations show that theta oscillations are not coherent in an isolated population of pacemaker cells. Robust synchronization emerges with the addition of a second GABAergic cell population. Such a reciprocally inhibitory circuit can be realized by the hippocampo-septal feedback loop.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp