Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2001 Dec;162(1-2):91-104.
doi: 10.1016/s0378-5955(01)00374-4.

Cochlear dimensions obtained in hemicochleae of four different strains of mice: CBA/CaJ, 129/CD1, 129/SvEv and C57BL/6J

Affiliations

Cochlear dimensions obtained in hemicochleae of four different strains of mice: CBA/CaJ, 129/CD1, 129/SvEv and C57BL/6J

S Keiler et al. Hear Res.2001 Dec.

Abstract

Because homologies between mice and human genomes are well established and hereditary abnormalities are similar in both, mice present a valuable animal model to study hereditary hearing disorders in humans. One of the manifestations of hereditary hearing disorders might be in the structure of cochlear elements, such as the gross morphology of the cochlea. Cochlear dimensions, however, are one factor that determines inner ear mechanics and thus hearing function. Therefore, gross cochlear dimension might be important when different strains of mice are compared regarding their hearing. Although several studies have examined mouse inner ear structures on a sub-cellular level, only few have studied cochlear gross morphology. Moreover, the sparse data available were acquired from fixed and dehydrated tissue. Dehydration, however, produces severe distortion of gel-like cochlear structures such as the tectorial membrane and the basilar membrane hyaline matrix. In this study, the hemicochlea technique, which allows fresh mouse cochlear material to be viewed from a radial perspective, was used to provide an itemized study of the dimensions of gross cochlear structures in four mouse strains (CBA/CaJ, 129/SvEv, 129/CD1 and C57BL/6J). Except for the CBA/CaJ, these strains are known to possess genes for age-related hearing loss. The measurements showed no major differences among the four strains. However, when compared with previous data, the thickness measures of the basilar membrane were up to 10 times larger. Such differences are likely to result from the different techniques used to process the material. The hemicochlea technique eliminates much of the distortion caused by dehydration, which was present in previous experiments.

PubMed Disclaimer

Publication types

MeSH terms

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp