Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior
- PMID:11587786
- DOI: 10.1016/s0196-9781(01)00493-4
Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior
Abstract
Quorum sensing enables unicellular organisms to behave in a multicellular way by allowing population-wide synchronized adaptive responses that involve modulation of a wide range of physiological responses in a cell density-, cell proximity- or growth phase-dependent manner. Examples of processes modulated by quorum sensing are the development of genetic competence, conjugative plasmid transfer, sporulation and cell differentiation, biofilm formation, virulence response, production of antibiotics, antimicrobial peptides and toxins, and bioluminescence (for reviews see [38]). The cell-to-cell communication strategies involved in these processes are based on the utilization of small signal molecules produced and released into the environment by the microorganisms. These communication molecules are referred to as pheromones and act as chemical messengers that transmit information across space. The extracellular pheromones accumulate in the environment and trigger a response in the target cells when its concentration reaches a certain threshold value. Elucidation of the chemical nature of the pheromones modulating the processes mentioned above reveals that most of them are unmodified peptides, post-translationally modified peptides, N-acyl homoserine lactones, or butyrolactones. Lactone-based pheromones are the preferred communication signals in Gram-negative bacteria (for review see [47,48]), whereas peptide-based pheromones are the predominant extracellular signals among Gram-positive bacteria (for review see [37,61]). However, lactone-based pheromones are utilized as signals that modulate differentiation and secondary metabolism production in Streptomyces (for review see [20]). This review focuses on the major advances and current views of the peptide-pheromone dependent regulatory circuits involved in production of antimicrobial peptides in Gram-positive bacteria.
Similar articles
- Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria.Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM.Kleerebezem M, et al.Mol Microbiol. 1997 Jun;24(5):895-904. doi: 10.1046/j.1365-2958.1997.4251782.x.Mol Microbiol. 1997.PMID:9219998Review.
- Cell to cell communication by autoinducing peptides in gram-positive bacteria.Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaugha EE, de Vos WM.Sturme MH, et al.Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):233-43. doi: 10.1023/a:1020522919555.Antonie Van Leeuwenhoek. 2002.PMID:12448722Review.
- Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria.Michiels J, Dirix G, Vanderleyden J, Xi C.Michiels J, et al.Trends Microbiol. 2001 Apr;9(4):164-8. doi: 10.1016/s0966-842x(01)01979-5.Trends Microbiol. 2001.PMID:11286880Review.
- Cell-cell communication in gram-positive bacteria.Dunny GM, Leonard BA.Dunny GM, et al.Annu Rev Microbiol. 1997;51:527-64. doi: 10.1146/annurev.micro.51.1.527.Annu Rev Microbiol. 1997.PMID:9343359Review.
- Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria.Hardman AM, Stewart GS, Williams P.Hardman AM, et al.Antonie Van Leeuwenhoek. 1998 Nov;74(4):199-210. doi: 10.1023/a:1001178702503.Antonie Van Leeuwenhoek. 1998.PMID:10081580Review.
Cited by
- Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria.Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG.Hetta HF, et al.Molecules. 2024 Jul 24;29(15):3466. doi: 10.3390/molecules29153466.Molecules. 2024.PMID:39124871Free PMC article.Review.
- Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01.Ni ZJ, Zhang XY, Liu F, Wang M, Hao RH, Ling PX, Zhu XQ.Ni ZJ, et al.Probiotics Antimicrob Proteins. 2017 Jun;9(2):204-212. doi: 10.1007/s12602-017-9268-8.Probiotics Antimicrob Proteins. 2017.PMID:28303477
- Characterization of antimicrobial substance from Lactobacillus salivarius KL-D4 and its application as biopreservative for creamy filling.Therdtatha P, Tandumrongpong C, Pilasombut K, Matsusaki H, Keawsompong S, Nitisinprasert S.Therdtatha P, et al.Springerplus. 2016 Jul 12;5(1):1060. doi: 10.1186/s40064-016-2693-4. eCollection 2016.Springerplus. 2016.PMID:27462508Free PMC article.
- Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752.Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J.Kemperman R, et al.Appl Environ Microbiol. 2003 Oct;69(10):5839-48. doi: 10.1128/AEM.69.10.5839-5848.2003.Appl Environ Microbiol. 2003.PMID:14532033Free PMC article.
- Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations.Doekes HM, de Boer RJ, Hermsen R.Doekes HM, et al.PLoS Comput Biol. 2019 Aug 30;15(8):e1007333. doi: 10.1371/journal.pcbi.1007333. eCollection 2019 Aug.PLoS Comput Biol. 2019.PMID:31469819Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical