Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
- PMID:11526030
- PMCID: PMC93154
- DOI: 10.1128/AEM.67.9.4249-4255.2001
Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
Abstract
Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) and XYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The gene XKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect of XKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressing XYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate. XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1 overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.
Figures

Similar articles
- Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.Toivari MH, Aristidou A, Ruohonen L, Penttilä M.Toivari MH, et al.Metab Eng. 2001 Jul;3(3):236-49. doi: 10.1006/mben.2000.0191.Metab Eng. 2001.PMID:11461146
- Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.Kim SR, Kwee NR, Kim H, Jin YS.Kim SR, et al.FEMS Yeast Res. 2013 May;13(3):312-21. doi: 10.1111/1567-1364.12036. Epub 2013 Mar 4.FEMS Yeast Res. 2013.PMID:23398717
- Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose.Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ.Yang BX, et al.FEMS Yeast Res. 2020 Dec 16;20(8):foaa061. doi: 10.1093/femsyr/foaa061.FEMS Yeast Res. 2020.PMID:33201998
- Metabolic engineering for improved fermentation of pentoses by yeasts.Jeffries TW, Jin YS.Jeffries TW, et al.Appl Microbiol Biotechnol. 2004 Feb;63(5):495-509. doi: 10.1007/s00253-003-1450-0. Epub 2003 Nov 1.Appl Microbiol Biotechnol. 2004.PMID:14595523Review.
- Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.Hou J, Qiu C, Shen Y, Li H, Bao X.Hou J, et al.FEMS Yeast Res. 2017 Jun 1;17(4). doi: 10.1093/femsyr/fox034.FEMS Yeast Res. 2017.PMID:28582494Review.
Cited by
- Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach.Jin YS, Alper H, Yang YT, Stephanopoulos G.Jin YS, et al.Appl Environ Microbiol. 2005 Dec;71(12):8249-56. doi: 10.1128/AEM.71.12.8249-8256.2005.Appl Environ Microbiol. 2005.PMID:16332810Free PMC article.
- Kinase expression enhances phenolic aldehydes conversion and ethanol fermentability of Zymomonas mobilis.Yi X, Wu J, Jiang H, Zhao Y, Mei J.Yi X, et al.Bioprocess Biosyst Eng. 2022 Aug;45(8):1319-1329. doi: 10.1007/s00449-022-02747-3. Epub 2022 Jul 3.Bioprocess Biosyst Eng. 2022.PMID:35786774
- Disruption of PHO13 improves ethanol production via the xylose isomerase pathway.Bamba T, Hasunuma T, Kondo A.Bamba T, et al.AMB Express. 2016 Mar;6(1):4. doi: 10.1186/s13568-015-0175-7. Epub 2016 Jan 14.AMB Express. 2016.PMID:26769491Free PMC article.
- Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose.Ni H, Laplaza JM, Jeffries TW.Ni H, et al.Appl Environ Microbiol. 2007 Apr;73(7):2061-6. doi: 10.1128/AEM.02564-06. Epub 2007 Feb 2.Appl Environ Microbiol. 2007.PMID:17277207Free PMC article.
- Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function.Jin YS, Jones S, Shi NQ, Jeffries TW.Jin YS, et al.Appl Environ Microbiol. 2002 Mar;68(3):1232-9. doi: 10.1128/AEM.68.3.1232-1239.2002.Appl Environ Microbiol. 2002.PMID:11872473Free PMC article.
References
- Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K. Current protocols in molecular biology. New York, N.Y: Wiley; 1995.
- Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234:179–186. - PubMed
- Bradford M M. Photometric methods for protein determination. Anal Biochem. 1976;72:248–254. - PubMed
- D'Amore T, Celotto G, Russel I, Stewart G G. Selection and optimization of yeast suitable for ethanol production at 40°C. Enzyme Microb Technol. 1989;11:411–416.
- de Jong-Gubbels P, Vanrolleghem P, Heijnen S, van Dijken J P, Pronk J T. Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast. 1995;11:407–418. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases