Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.2001 Jul 26;412(6845):411-4.
doi: 10.1038/35086515.

Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice

Affiliations

Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice

J F Mustard et al. Nature..

Abstract

Ground ice in the crust and soil may be one of the largest reservoirs of water on Mars. Near-surface ground ice is predicted to be stable at latitudes higher than 40 degrees (ref. 4), where a number of geomorphologic features indicative of viscous creep and hence ground ice have been observed. Mid-latitude soils have also been implicated as a water-ice reservoir, the capacity of which is predicted to vary on a 100,000-year timescale owing to orbitally driven variations in climate. It is uncertain, however, whether near-surface ground ice currently exists at these latitudes, and how it is changing with time. Here we report observational evidence for a mid-latitude reservoir of near-surface water ice occupying the pore space of soils. The thickness of the ice-occupied soil reservoir (1-10 m) and its distribution in the 30 degrees to 60 degrees latitude bands indicate a reservoir of (1.5-6.0) x 104 km3, equivalent to a global layer of water 10-40 cm thick. We infer that the reservoir was created during the last phase of high orbital obliquity less than 100,000 years ago, and is now being diminished.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp