ZBP-89 promotes growth arrest through stabilization of p53
- PMID:11416144
- PMCID: PMC87140
- DOI: 10.1128/MCB.21.14.4670-4683.2001
ZBP-89 promotes growth arrest through stabilization of p53
Abstract
Transcription factor p53 can induce growth arrest and/or apoptosis in cells through activation or repression of downstream target genes. Recently, we reported that ZBP-89 cooperates with histone acetyltransferase coactivator p300 in the regulation of p21(waf1), a cyclin-dependent kinase inhibitor whose associated gene is a target gene of p53. Therefore, we examined whether ZBP-89 might also inhibit cell growth by activating p53. In the present study, we demonstrate that elevated levels of ZBP-89 induce growth arrest and apoptosis in human gastrointestinal cell lines. The ZBP-89 protein accumulated within 4 h, and the p53 protein accumulated within 16 h, of serum starvation without changes in p14ARF levels, demonstrating a physiological increase in the cellular levels of these two proteins. Overexpression of ZBP-89 stabilized the p53 protein and enhanced its transcriptional activity through direct protein-protein interactions. The DNA binding and C-terminal domains of p53 and the zinc finger domain of ZBP-89 mediated the interaction. A point mutation in the p53 DNA binding domain, R273H, greatly reduced ZBP-89-mediated stabilization but not their physical interaction. Furthermore, ZBP-89 formed a complex with p53 and MDM2 and therefore did not prevent the MDM2-p53 interaction. However, heterokaryon assays demonstrated that ZBP-89 retained p53 in the nucleus. Collectively, these data indicate that ZBP-89 regulates cell proliferation in part through its ability to directly bind the p53 protein and retard its nuclear export. Our findings further our understanding of how ZBP-89 modulates cell proliferation and reveals a novel mechanism by which the p53 protein is stabilized.
Figures










References
- An W G, Kanekal M, Simon M C, Maltepe E, Blagosklonny M V, Neckers L M. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392:405–408. - PubMed
- Ashcroft M, Vousden K H. Regulation of p53 stability. Oncogene. 1999;18:7637–7643. - PubMed
- Avantaggiati M L, Ogryzko V, Gardner K, Giordano A, Levine A S, Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell. 1997;89:1175–1184. - PubMed
- Bai L, Merchant J L. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem. 2000;275:30725–30733. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous