Size-dependent degree distribution of a scale-free growing network
- PMID:11415146
- DOI: 10.1103/PhysRevE.63.062101
Size-dependent degree distribution of a scale-free growing network
Abstract
We propose the simplest model of scale-free growing networks and obtain the exact form of its degree distribution for any size of the network (degree is a number of connections of a node). We demonstrate that a trace of initial conditions - a hump near cutoff of the degree distribution at k(cut) approximately t(beta)--may be found for any network size. Here beta=1/(gamma-1), where gamma is the exponent of the degree distribution of the network. These size effects implement a natural boundary for the observation of the scale-free networks.
Similar articles
- Growing optimal scale-free networks via likelihood.Small M, Li Y, Stemler T, Judd K.Small M, et al.Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042801. doi: 10.1103/PhysRevE.91.042801. Epub 2015 Apr 7.Phys Rev E Stat Nonlin Soft Matter Phys. 2015.PMID:25974541
- Scale-free networks with tunable degree-distribution exponents.Lee HY, Chan HY, Hui PM.Lee HY, et al.Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):067102. doi: 10.1103/PhysRevE.69.067102. Epub 2004 Jun 2.Phys Rev E Stat Nonlin Soft Matter Phys. 2004.PMID:15244781
- Anomalous percolation properties of growing networks.Dorogovtsev SN, Mendes JF, Samukhin AN.Dorogovtsev SN, et al.Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066110. doi: 10.1103/PhysRevE.64.066110. Epub 2001 Nov 19.Phys Rev E Stat Nonlin Soft Matter Phys. 2001.PMID:11736239
- Approaching the thermodynamic limit in equilibrated scale-free networks.Waclaw B, Bogacz L, Janke W.Waclaw B, et al.Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061125. doi: 10.1103/PhysRevE.78.061125. Epub 2008 Dec 23.Phys Rev E Stat Nonlin Soft Matter Phys. 2008.PMID:19256820
- Ising model in clustered scale-free networks.Herrero CP.Herrero CP.Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052812. doi: 10.1103/PhysRevE.91.052812. Epub 2015 May 20.Phys Rev E Stat Nonlin Soft Matter Phys. 2015.PMID:26066217
Cited by
- Modeling the spread of vector-borne diseases on bipartite networks.Bisanzio D, Bertolotti L, Tomassone L, Amore G, Ragagli C, Mannelli A, Giacobini M, Provero P.Bisanzio D, et al.PLoS One. 2010 Nov 12;5(11):e13796. doi: 10.1371/journal.pone.0013796.PLoS One. 2010.PMID:21103064Free PMC article.
- Population structure induces a symmetry breaking favoring the emergence of cooperation.Pacheco JM, Pinheiro FL, Santos FC.Pacheco JM, et al.PLoS Comput Biol. 2009 Dec;5(12):e1000596. doi: 10.1371/journal.pcbi.1000596. Epub 2009 Dec 11.PLoS Comput Biol. 2009.PMID:20011116Free PMC article.
- Artificial intelligence development races in heterogeneous settings.Cimpeanu T, Santos FC, Pereira LM, Lenaerts T, Han TA.Cimpeanu T, et al.Sci Rep. 2022 Feb 2;12(1):1723. doi: 10.1038/s41598-022-05729-3.Sci Rep. 2022.PMID:35110627Free PMC article.
- Tools for protein-protein interaction network analysis in cancer research.Sanz-Pamplona R, Berenguer A, Sole X, Cordero D, Crous-Bou M, Serra-Musach J, Guinó E, Pujana MÁ, Moreno V.Sanz-Pamplona R, et al.Clin Transl Oncol. 2012 Jan;14(1):3-14. doi: 10.1007/s12094-012-0755-9.Clin Transl Oncol. 2012.PMID:22262713Review.
- Graph topology plays a determinant role in the evolution of cooperation.Santos FC, Rodrigues JF, Pacheco JM.Santos FC, et al.Proc Biol Sci. 2006 Jan 7;273(1582):51-5. doi: 10.1098/rspb.2005.3272.Proc Biol Sci. 2006.PMID:16519234Free PMC article.