Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2001 Jun 29;276(26):24153-9.
doi: 10.1074/jbc.M101530200. Epub 2001 Apr 17.

Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta

Affiliations
Free article

Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta

A Ammendola et al. J Biol Chem..
Free article

Abstract

Cyclic GMP-dependent protein kinase I (cGKI) affects the inositol 1,4,5-trisphosphate (InsP(3))-dependent release of intracellular calcium by phosphorylation of IRAG (inositol 1,4,5-trisphophate receptor-associated cGMP kinase substrate). IRAG is present in a macromolecular complex with the InsP(3) receptor type I (InsP(3)RI) and cGKIbeta. The specificity of the interaction between these three proteins was investigated by using the yeast two-hybrid system and by co-precipitation of expressed proteins. The amino-terminal region containing the leucine zipper (amino acids 1-53) of cGKIbeta but not that of cGKIalpha or cGKII interacted with the sequence between amino acids 152 and 184 of IRAG in vitro and in vivo most likely through electrostatic interaction. cGKIbeta did not interact with the InsP(3)RI, but co-precipitated the InsP(3)RI in the presence of IRAG indicating that IRAG bound to the InsP(3)RI and to cGKIbeta. cGKIbeta phosphorylated up to four serines in IRAG. Mutation of these four serines to alanine showed that cGKIbeta-dependent phosphorylation of Ser(696) is necessary to decrease calcium release from InsP(3)-sensitive stores. These results show that cGMP induced reduction of cytosolic calcium concentrations requires cGKIbeta and phosphorylation of Ser(696) of IRAG.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp