The interacting domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2
- PMID:11292842
- PMCID: PMC31313
- DOI: 10.1093/nar/29.8.1695
The interacting domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2
Abstract
In human cells, hMLH1, hMLH3, hPMS1 and hPMS2 are four recognised and distinctive homologues of MutL, an essential component of the bacterial DNA mismatch repair (MMR) system. The hMLH1 protein forms three different heterodimers with one of the other MutL homologues. As a first step towards functional analysis of these molecules, we determined the interacting domains of each heterodimer and tried to understand their common features. Using a yeast two-hybrid assay, we show that these MutL homologues can form heterodimers by interacting with the same amino acid residues of hMLH1, residues 492-742. In contrast, three hMLH1 partners, hMLH3, hPMS1 and hPMS2 contain the 36 homologous amino acid residues that interact strongly with hMLH1. Contrary to the previous studies, these homologous residues reside at the N-terminal regions of three subdomains conserved in MutL homologues in many species. Interestingly, these residues in hPMS2 and hMLH3 may form coiled-coil structures as predicted by the MULTICOIL program. Furthermore, we show that there is competition for the interacting domain in hMLH1 among the three other MutL homologues. Therefore, the quantitative balance of these three MutL heterodimers may be important in their functions.
Figures








Similar articles
- Identification of a second MutL DNA mismatch repair complex (hPMS1 and hMLH1) in human epithelial cells.Leung WK, Kim JJ, Wu L, Sepulveda JL, Sepulveda AR.Leung WK, et al.J Biol Chem. 2000 May 26;275(21):15728-32. doi: 10.1074/jbc.M908768199.J Biol Chem. 2000.PMID:10748105
- Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1.Räschle M, Marra G, Nyström-Lahti M, Schär P, Jiricny J.Räschle M, et al.J Biol Chem. 1999 Nov 5;274(45):32368-75. doi: 10.1074/jbc.274.45.32368.J Biol Chem. 1999.PMID:10542278
- Conditional nuclear localization of hMLH3 suggests a minor activity in mismatch repair and supports its role as a low-risk gene in HNPCC.Korhonen MK, Raevaara TE, Lohi H, Nyström M.Korhonen MK, et al.Oncol Rep. 2007 Feb;17(2):351-4.Oncol Rep. 2007.PMID:17203173
- [Homologs of MutS and MutL during mammalian meiosis].Santucci-Darmanin S, Paquis-Flucklinger V.Santucci-Darmanin S, et al.Med Sci (Paris). 2003 Jan;19(1):85-91. doi: 10.1051/medsci/200319185.Med Sci (Paris). 2003.PMID:12836196Review.French.
- Molecular basis of HNPCC: mutations of MMR genes.Papadopoulos N, Lindblom A.Papadopoulos N, et al.Hum Mutat. 1997;10(2):89-99. doi: 10.1002/(SICI)1098-1004(1997)10:2<89::AID-HUMU1>3.0.CO;2-H.Hum Mutat. 1997.PMID:9259192Review.
Cited by
- DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers.Caja F, Vodickova L, Kral J, Vymetalkova V, Naccarati A, Vodicka P.Caja F, et al.Int J Mol Sci. 2020 Aug 3;21(15):5561. doi: 10.3390/ijms21155561.Int J Mol Sci. 2020.PMID:32756484Free PMC article.Review.
- PCNA-MutSalpha-mediated binding of MutLalpha to replicative DNA with mismatched bases to induce apoptosis in human cells.Hidaka M, Takagi Y, Takano TY, Sekiguchi M.Hidaka M, et al.Nucleic Acids Res. 2005 Oct 4;33(17):5703-12. doi: 10.1093/nar/gki878. Print 2005.Nucleic Acids Res. 2005.PMID:16204460Free PMC article.
- PMS2 variant results in loss of ATPase activity without compromising mismatch repair.D'Arcy BM, Arrington J, Weisman J, McClellan SB, Vandana, Yang Z, Deivanayagam C, Blount J, Prakash A.D'Arcy BM, et al.Mol Genet Genomic Med. 2022 Feb 21;10(5):e1908. doi: 10.1002/mgg3.1908. Online ahead of print.Mol Genet Genomic Med. 2022.PMID:35189042Free PMC article.
- GAA•TTC repeat expansion in human cells is mediated by mismatch repair complex MutLγ and depends upon the endonuclease domain in MLH3 isoform one.Halabi A, Fuselier KTB, Grabczyk E.Halabi A, et al.Nucleic Acids Res. 2018 May 4;46(8):4022-4032. doi: 10.1093/nar/gky143.Nucleic Acids Res. 2018.PMID:29529236Free PMC article.
- FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats.Porro A, Mohiuddin M, Zurfluh C, Spegg V, Dai J, Iehl F, Ropars V, Collotta G, Fishwick KM, Mozaffari NL, Guérois R, Jiricny J, Altmeyer M, Charbonnier JB, Pearson CE, Sartori AA.Porro A, et al.Sci Adv. 2021 Jul 30;7(31):eabf7906. doi: 10.1126/sciadv.abf7906. Print 2021 Jul.Sci Adv. 2021.PMID:34330701Free PMC article.
References
- Modrich P. (1991) Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet., 25, 229–253. - PubMed
- Kolodner R. (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev., 10, 1433–1442. - PubMed
- Peltomäki P. and Vasen,H.F.A. (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. Gastroenterology, 113, 1146–1158. - PubMed
- Eshleman J.R. and Markowitz,S.D. (1995) Microsatellite instability in inherited and sporadic neoplasms. Curr. Opin. Oncol., 7, 83–89. - PubMed
- Modrich P. and Lahue,R. (1996) Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem., 65, 101–133. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Related information
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials