Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.2000 Sep-Oct;71(1-2):32-42.
doi: 10.1006/mgme.2000.3077.

Nutrition, oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging?

Affiliations
Review

Nutrition, oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging?

B J Jennings et al. Mol Genet Metab.2000 Sep-Oct.

Abstract

There is substantial and long-standing literature linking the level of general nutrition to longevity. Reducing nutrition below the amount needed to sustain maximum growth increases longevity in a wide range of organisms. Oxidative damage has been shown to be a major feature of the aging process. Telomere shortening is now well established as a key process regulating cell senescence in vitro. There is some evidence that the same process may be important for aging in vivo. Very recently it has been found that oxidative damage accelerates telomere shortening. It is therefore possible for us to propose as an outline hypothesis that the level of nutrition determines oxidative damage which in turn determines telomere shortening and cell senescence and that this pathway is important in determining aging and longevity in vivo. We also propose that telomeres in addition to their well-recognized role in "counting" cell divisions are also, through their GGG sequence, important monitors of oxidative damage over the life span of a cell. This may explain the evolutionary conservations of this triplet in the repeat telomere sequence unit.

Copyright 2000 Academic Press.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp