Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Springer full text link Springer
Full text links

Actions

Review
.2000 Apr:247 Suppl 2:II95-102.
doi: 10.1007/pl00022909.

MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson's disease: neuroprotective strategies

Affiliations
Review

MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson's disease: neuroprotective strategies

E Grünblatt et al. J Neurol.2000 Apr.

Abstract

The etiology of Parkinson's disease is not known. Nevertheless, a significant body of biochemical data from human brain autopsy studies and from animal models points to an ongoing process of oxidative stress in the substantia nigra, which could initiate dopaminergic neurodegeneration. It is not known whether oxidative stress is a primary or secondary event. Oxidative stress, as induced by the neurotoxins 6-hydroxydopamine and MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), has been used in animal models to investigate the process of neurodegeneration to facilitate the development of antioxidant, neuroprotective drugs. It is apparent in these animal models that radical scavengers, iron chelators, dopamine agonists, nitric oxide synthase inhibitors and certain calcium channel antagonists provide neuroprotection against such toxins if given prior to the insult. Furthermore, recent work from human and animal studies has provided evidence of an inflammatory process. This expresses itself as proliferation of activated microglia in the substantia nigra, activation and translocation of transcription factors and neurotrophic factor (NF), kappa-beta and elevation of cytotoxic cytokines, tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6. Both radical scavengers and iron chelators prevent lipopolysaccharide (LPS) and iron-induced activation of NF kappa-beta. If an inflammatory response is involved in Parkinson's disease, it would be logical to consider antioxidants and the newly developed, non-steroidal, anti-inflammatory drugs such as cyclo-oxygenase (COX2) inhibitors as a form of treatment. However, to date there has been little or no success in the clinical treatment of neurodegenerative diseases (for example, Parkinson's disease, ischaemia etc.) where neurons die, while in animal models the same drugs provide neuroprotection. This may indicate that either the animal models employed do not reflect the events in neurodegenerative diseases, or that because neuronal death involves a cascade of events, a single neuroprotective drug is not effective. Thus, consideration should be given to multi-neuroprotective drug therapy in Parkinson's disease, similar to the approach taken in AIDS and cancer therapy.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Springer full text link Springer
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp