Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Comparative Study
.2000 Apr 13;19(16):1992-2001.
doi: 10.1038/sj.onc.1203519.

Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system

Affiliations
Comparative Study

Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system

E Sadot et al. Oncogene..

Abstract

Beta-catenin and plakoglobin are closely related armadillo family proteins with shared and distinct properties; Both are associated with cadherins in actin-containing adherens junctions. Plakoglobin is also found in desmosomes where it anchors intermediate filaments to the desmosomal plaques. Beta-catenin, on the other hand, is a component of the Wnt signaling pathway, which is involved in embryonic morphogenesis and tumorigenesis. A key step in the regulation of this pathway involves modulation of beta-catenin stability. A multiprotein complex, regulated by Wnt, directs the phosphorylation of beta-catenin and its degradation by the ubiquitin-proteasome system. Plakoglobin can also associate with members of this complex, but inhibition of proteasomal degradation has little effect on its levels while dramatically increasing the levels of beta-catenin. Beta-TrCP, an F-box protein of the SCF E3 ubiquitin ligase complex, was recently shown to play a role in the turnover of beta-catenin. To elucidate the basis for the apparent differences in the turnover of beta-catenin and plakoglobin we compared the handling of these two proteins by the ubiquitin-proteasome system. We show here that a deletion mutant of beta-TrCP, lacking the F-box, can stabilize the endogenous beta-catenin leading to its nuclear translocation and induction of beta-catenin/LEF-1-directed transcription, without affecting the levels of plakoglobin. However, when plakoglobin was overexpressed, it readily associated with beta-TrCP, efficiently competed with beta-catenin for binding to beta-TrCP and became polyubiquitinated. Fractionation studies revealed that about 85% of plakoglobin in 293 cells, is Triton X-100-insoluble compared to 50% of beta-catenin. These results suggest that while both plakoglobin and beta-catenin can comparably interact with beta-TrCP and the ubiquitination system, the sequestration of plakoglobin by the membrane-cytoskeleton system renders it inaccessible to the proteolytic machinery and stabilizes it.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp