Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

.2000 May 4;473(1):95-100.
doi: 10.1016/s0014-5793(00)01468-x.

The Krüppel-like transcriptional factors Zf9 and GKLF coactivate the human keratin 4 promoter and physically interact

Affiliations
Free article

The Krüppel-like transcriptional factors Zf9 and GKLF coactivate the human keratin 4 promoter and physically interact

J Okano et al. FEBS Lett..
Free article

Abstract

Zf9/CPBP/KLF6 is a widely expressed member of the Krüppel-like family of transcriptional factors which regulates gene expression in hepatic stellate cells. Because of its ubiquitous expression including in the esophagus, we have explored its function in the esophageal squamous epithelium, a model system to study cellular proliferation and differentiation. Reverse transcription-PCR (RT-PCR) and Western blot analyses revealed that Zf9 was highly expressed in human esophageal squamous cancer cell lines. Additionally, Zf9 localizes to the esophageal squamous epithelium by immunohistochemistry. Using transient transfection, Zf9 transactivates the human keratin 4 (K4) promoter reporter gene construct in a subset of the esophageal cancer cell lines through indirect mechanisms. Co-transfection of Zf9 and GKLF/KLF4, which is also a member of the Krüppel-like factors and expressed in the esophageal squamous epithelium, leads to coactivation in an additive fashion. Furthermore, we demonstrate that there is a physical interaction between GKLF and Zf9, a novel finding for Krüppel-like family members.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp