Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2000 Feb;7(2):97-109.
doi: 10.1016/s1074-5521(00)00075-2.

The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90

Affiliations

The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90

I Molnár et al. Chem Biol.2000 Feb.

Abstract

Background: Epothilones are produced by the myxobacterium Sorangium cellulosum So ce90, and, like paclitaxel (Taxol((R))), they inhibit microtubule depolymerisation and arrest the cell cycle at the G2-M phase. They are effective against P-glycoprotein-expressing multiple-drug-resistant tumor cell lines and are more water soluble than paclitaxel. The total synthesis of epothilones has been achieved, but has not provided an economically viable alternative to fermentation. We set out to clone, sequence and analyze the gene cluster responsible for the biosynthesis of the epothilones in S. cellulosum So ce90.

Results: A cluster of 22 open reading frames spanning 68,750 base pairs of the S. cellulosum So ce90 genome has been sequenced and found to encode nine modules of a polyketide synthase (PKS), one module of a nonribosomal peptide synthetase (NRPS), a cytochrome P450, and two putative antibiotic transport proteins. Disruptions in the genes encoding the PKS abolished epothilone production. The first PKS module and the NRPS module are proposed to co-operate in forming the thiazole heterocycle of epothilone from an acetate and a cysteine by condensation, cyclodehydration and subsequent dehydrogenation. The remaining eight PKS modules are responsible for the elaboration of the rest of the epothilone carbon skeleton.

Conclusions: The overall architecture of the gene cluster responsible for epothilone biosynthesis has been determined. The availability of the cluster should facilitate the generation of designer epothilones by combinatorial biosynthesis approaches, and the heterologous expression of epothilones in surrogate microbial hosts.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

Associated data

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp