Genome-wide analysis of DNA copy-number changes using cDNA microarrays
- PMID:10471496
- DOI: 10.1038/12640
Genome-wide analysis of DNA copy-number changes using cDNA microarrays
Abstract
Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.
Similar articles
- High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays.Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG.Pinkel D, et al.Nat Genet. 1998 Oct;20(2):207-11. doi: 10.1038/2524.Nat Genet. 1998.PMID:9771718
- Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijnenburg J, Gorter A, Kenter GG, Fleuren GJ, Jordanova ES.Kloth JN, et al.BMC Genomics. 2007 Feb 20;8:53. doi: 10.1186/1471-2164-8-53.BMC Genomics. 2007.PMID:17311676Free PMC article.
- Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors.Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, Pinkel D.Kallioniemi OP, et al.Genes Chromosomes Cancer. 1994 Aug;10(4):231-43. doi: 10.1002/gcc.2870100403.Genes Chromosomes Cancer. 1994.PMID:7522536Review.
- The use of ultra-dense array CGH analysis for the discovery of micro-copy number alterations and gene fusions in the cancer genome.Przybytkowski E, Ferrario C, Basik M.Przybytkowski E, et al.BMC Med Genomics. 2011 Jan 27;4:16. doi: 10.1186/1755-8794-4-16.BMC Med Genomics. 2011.PMID:21272361Free PMC article.
- Microarray-based comparative genomic hybridization and its applications in human genetics.Oostlander AE, Meijer GA, Ylstra B.Oostlander AE, et al.Clin Genet. 2004 Dec;66(6):488-95. doi: 10.1111/j.1399-0004.2004.00322.x.Clin Genet. 2004.PMID:15521975Review.
Cited by
- Matching of array CGH and gene expression microarray features for the purpose of integrative genomic analyses.van Wieringen WN, Unger K, Leday GG, Krijgsman O, de Menezes RX, Ylstra B, van de Wiel MA.van Wieringen WN, et al.BMC Bioinformatics. 2012 May 4;13:80. doi: 10.1186/1471-2105-13-80.BMC Bioinformatics. 2012.PMID:22559006Free PMC article.
- Malignant and benign ganglioglioma: a pathological and molecular study.Pandita A, Balasubramaniam A, Perrin R, Shannon P, Guha A.Pandita A, et al.Neuro Oncol. 2007 Apr;9(2):124-34. doi: 10.1215/15228517-2006-029. Epub 2007 Jan 26.Neuro Oncol. 2007.PMID:17259542Free PMC article.
- Physical mapping of genes in somatic cell radiation hybrids by comparative genomic hybridization to cDNA microarrays.Lin JY, Pollack JR, Chou FL, Rees CA, Christian AT, Bedford JS, Brown PO, Ginsberg MH.Lin JY, et al.Genome Biol. 2002;3(6):RESEARCH0026. doi: 10.1186/gb-2002-3-6-research0026. Epub 2002 May 14.Genome Biol. 2002.PMID:12093373Free PMC article.
- Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines.Junnila S, Kokkola A, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O.Junnila S, et al.BMC Cancer. 2010 Mar 1;10:73. doi: 10.1186/1471-2407-10-73.BMC Cancer. 2010.PMID:20187983Free PMC article.
- A prediction-based resampling method for estimating the number of clusters in a dataset.Dudoit S, Fridlyand J.Dudoit S, et al.Genome Biol. 2002 Jun 25;3(7):RESEARCH0036. doi: 10.1186/gb-2002-3-7-research0036. Epub 2002 Jun 25.Genome Biol. 2002.PMID:12184810Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous