Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Case Reports
.1999 Aug 20;274(34):24023-30.
doi: 10.1074/jbc.274.34.24023.

Functional and structural studies of wild type SOX9 and mutations causing campomelic dysplasia

Affiliations
Free article
Case Reports

Functional and structural studies of wild type SOX9 and mutations causing campomelic dysplasia

S McDowall et al. J Biol Chem..
Free article

Abstract

In humans, mutations in SOX9 result in a skeletal malformation syndrome, campomelic dysplasia (CD). The present study investigated two major classes of CD mutations: 1) point mutations in the high mobility group (HMG) domain and 2) truncations and frameshifts that alter the C terminus of the protein. We analyzed the effect of one novel mutation and three other point mutations in the HMG domain of SOX9 on the DNA binding and DNA bending properties of the protein. The F12L mutant HMG domain shows negligible DNA binding, the H65Y mutant shows minimal DNA binding, whereas the A19V mutant shows near wild type DNA binding and bends DNA normally. Interestingly, the P70R mutant has altered DNA binding specificity, but also bends DNA normally. The effects of the point mutations were interpreted using a molecular model of the SOX9 HMG domain. We analyzed the effects upon transcription of mutations resembling the truncation and frameshift mutations in CD patients, and found that progressive deletion of the C terminus causes progressive loss of transactivation. Maximal transactivation by SOX9 requires both the C-terminal domain rich in proline, glutamine, and serine and the adjacent domain composed entirely of proline, glutamine, and alanine. Thus, CD arises by mutations that interfere with DNA binding by SOX9 or truncate the C-terminal transactivation domain and thereby impede the ability of SOX9 to activate target genes during organ development.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp