Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

.1999 Jun;55(6):957-69.
doi: 10.1124/mol.55.6.957.

A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein

Affiliations

A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein

T Masuko et al. Mol Pharmacol.1999 Jun.

Abstract

There are complex interactions between spermine, protons, and ifenprodil at N-methyl-D-aspartate receptors. Spermine stimulation may involve relief of proton inhibition, whereas ifenprodil inhibition may involve an increase in proton inhibition. We studied mutations at acidic residues in the NR1 subunit using voltage-clamp recording of NR1/NR2B receptors expressed in Xenopus oocytes. Mutations at residues near the site of the exon-5 insert, including E181 and E185, reduced spermine stimulation and proton inhibition. Mutation NR1(D130N) reduced sensitivity to ifenprodil by more than 500-fold, but had little effect on sensitivity to spermine and pH. Mutations at six other residues in this region of the NR1 subunit reduced the potency and, in some cases, the maximum effect of ifenprodil. These mutants did not affect sensitivity to pH, glutamate, glycine, or other hallmark properties of N-methyl-D-aspartate channels such as Mg2+ block and Ba2+ permeability. Residues in this region presumably form part of the ifenprodil-binding site. To model this region of NR1 we compared the predicted secondary structure of NR1 (residues 19-400) with the known structures of 1,400 proteins. This region of NR1 is most similar to bacterial leucine/isoleucine/valine binding protein, a globular amino acid binding protein containing two lobes, similar to the downstream S1-S2 region of glutamate receptors. We propose that the tertiary structure of NR1(22-375) is similar to leucine/isoleucine/valine binding protein, containing two "regulatory" domains, which we term R1 and R2. This region, which contains the binding sites for spermine and ifenprodil, may influence the downstream S1 and S2 domains that constitute the glycine binding pocket.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp