Alei da gravitação universal afirma que, se dois corpos possuemmassa, ambos estão submetidos a uma força de atração mútua proporcional às suas massas e inversamente proporcional ao quadrado da distância que separa seus centros de gravidade.[1] Essa lei foi formulada pelo físico inglêsIsaac Newton em sua obraPhilosophiae Naturalis Principia Mathematica, publicada em 1687, que descreve alei da gravitação universal e asLeis de Newton — as três leis dos corpos em movimento que assentaram-se como fundamento damecânica clássica.[2]
Agravidade é umaforça fundamental de atração que age entre todos os objetos por causa de suasmassas, isto é, a quantidade dematéria de que são constituídos. A gravidade mantém os objetos celestes unidos e ligados, como osgases quentes contidos peloSol e osplanetas, confinados às suasórbitas. A gravidade daLua causa asmarés oceânicas naTerra. Por causa da gravitação, os objetos sobre a Terra são atraídos para seu centro.
Ainda que os efeitos da gravidade sejam fáceis de notar, a busca de uma explicação para a força gravitacional tem embaraçado o homem durante séculos. O filósofo gregoAristóteles empreendeu uma das primeiras tentativas de explicar como e por que os objetos caem em direção à Terra. Entre suas conclusões, estava a ideia de que os objetos pesados caem mais rápido que os leves. Embora alguns tenham se oposto a essa concepção, ela foi comumente aceita até o fim doséculo XVII, quando as descobertas do cientista italianoGalileu Galilei ganharam aceitação. De acordo com Galileu, todos os objetos caíam com a mesmaaceleração, a menos que aresistência do ar ou alguma outra força os freasse.
Sir Isaac Newton, o primeiro a formular a lei da gravitação universal.
Os antigosastrônomosgregos estudaram os movimentos dos planetas e da Lua. Entretanto, o paradigma aceito hoje foi determinado porIsaac Newton, físico e matemático inglês, baseado em estudos e descobertas feitas pelos físicos que até então trilhavam o caminho da gravitação. Como Newton mesmo disse, ele chegou a suas conclusões porque estava "apoiado em ombros de gigantes". No início doséculo XVII, Newton baseou sua explicação em cuidadosas observações dos movimentos planetários, feitas porTycho Brahe e porJohannes Kepler. Newton estudou o mecanismo que fazia com que aLua girasse em torno da Terra. Estudando os princípios elaborados porGalileu Galilei e porJohannes Kepler, conseguiu elaborar uma teoria que dizia que todos os corpos que possuíam massa sofreriam atração entre si.
Galileu Galilei previamente estabeleceu uma relação entre a queda dos corpos e os movimentos planetários. Alguns contemporâneos deNewton, comoRobert Hooke,Christopher Wren eEdmund Halley, também fizeram avanços significativos no entendimento da gravitação. No entanto, foi Newton quem primeiramente propôs uma forma matemática precisa e a utilizou para demonstrar que os corpos celestes deveriam seguir trajetórias em forma de seções cônicas, incluindo círculos, elipses, parábolas e hipérboles. Essa projeção teórica foi um triunfo notável, uma vez que já se sabia há algum tempo que luas, planetas e cometas seguiam essas trajetórias, mas ninguém havia sido capaz de elucidar o mecanismo que os levasse a seguir essas trajetórias específicas e não outras. A magnitude da força em cada objeto (um tem massa maior que o outro) é a mesma, de acordo com a terceira lei de Newton.[3]
A partir dasleis de Kepler, Newton mostrou que tipos de forças devem ser necessárias para manter os planetas em suas órbitas. Ele calculou como a força deveria ser na superfície da Terra. Essa força provou ser a mesma que dá à massa sua aceleração.
Diz uma lenda que, quando tinha 23 anos, Newton viu uma maçã cair de uma árvore e compreendeu que a mesma força que a fazia cair mantinha aLua em suaórbita em torno daTerra.
Conforme os primeiros relatos, Newton encontrou sua inspiração para estabelecer a relação entre a queda dos corpos e os movimentos astronômicos ao testemunhar uma maçã caindo de uma árvore. Esse evento o levou a uma percepção crucial: se a força gravitacional pudesse estender-se além do solo até a árvore, também poderia alcançar o Sol. A anedota da maçã de Newton tornou-se parte do folclore mundial, embora sua veracidade possa estar ancorada em fatos.[3]
A importância atribuída a essa inspiração está ligada ao fato de que as leis universais da gravitação de Newton e suas leis do movimento responderam a questionamentos ancestrais sobre a natureza, fornecendo um sólido suporte à noção de simplicidade e unidade subjacentes à realidade natural. Os cientistas ainda anseiam que a simplicidade subjacente seja revelada através de suas contínuas investigações sobre a natureza.
As partículas dos corpos que possuem uma distribuição de massa simetricamente esférica, como estrelas, luas e planetas, tendem a se aproximar do centro de massa. Assim, um acumulado de poeira cósmica ao aglutinar-se, as partículas começam a se aproximar de forma uniforme, pois quanto mais acumuladas, mais força têm para comprimi-las. Por isso os corpos geralmente assumem uma forma esférica, visto que, quando sua massa é pequena esse efeito é bastante baixo e os corpos podem ter alterações em seus formatos.[4]
Dois corpos puntiformesm1 em2 atraem-se exercendo entre si forças de mesma intensidadeF1 eF2, proporcionais ao produto das duas massas e inversamente proporcionais ao quadrado da distância (r) entre elas.G é aconstante gravitacional.
Alei da gravitação universal diz que duas partículas quaisquer do Universo se atraemgravitacionalmente por meio de uma força que é diretamente proporcional ao produto de suasmassas e inversamente proporcional ao quadrado da distância que as separa.
A força gravitacional é sempre atrativa e sua magnitude depende apenas das massas das partículas envolvidas e da distância que as separa. Expressando-se na linguagem moderna, a lei universal da gravitação de Newton estabelece que cada partícula no universo exerce uma atração em todas as outras partículas ao longo de uma linha que as conecta.[3]
Se os corpos não são de partículas ou não podem ser considerados como pontos materiais, a distância estabelecida entre elas deve ser medida em relação ao centro de massa delas, ou seja pontos onde pode-se supor que está concentrada toda a massa do corpo ou o sistema de corpos.
onde
F1 (F2) é aforça, sentida pelo corpo 1 (2) devido ao corpo 2 (1), medida emnewtons;
A constante gravitacional universal foi medida anos mais tarde porHenry Cavendish. A descoberta da lei da gravitação universal se deu em 1685 como resultado de uma série de estudos e trabalhos iniciados muito antes.
O estabelecimento de uma lei de gravitação, que unifica todos os fenômenos terrestres e celestes de atração entre os corpos, teve enorme importância para a evolução da ciência moderna.
A lei da gravitação de Newton leva a observação de Galileu, de que todas as massas caem com a mesmaaceleração, a um passo adiante, explicando essa observação em termos de uma força que faz com que os objetos caiam - na verdade, em termos de uma força de atração universal existente entre as massas.[3]
Para resolver o problema, é necessário saber como aaceleração é escrita em coordenadas polares, isto é, comocombinação linear dosversores e. Como, basta derivar duas vezes ovetor posição em relação ao tempo para encontrar a aceleração. Em coordenadas polares:
Talequação diferencial de em função de pode ser modificada de modo que seja uma função de modificando a segunda derivada temporal através daregra da cadeia:
Resulta, então a seguinte equação para a função:
Para resolver, define-se a função e, consequentemente, suas derivadas em relação a:[7]