Part ofAdvances in Neural Information Processing Systems 34 (NeurIPS 2021)
Xiao Lv, Wei Cui, Yulong Liu
In this paper, we present non-asymptotic optimization guarantees of gradient descent methods for estimating structured transition matrices in high-dimensional vector autoregressive (VAR) models. We adopt the projected gradient descent (PGD) for single-structured transition matrices and the alternating projected gradient descent (AltPGD) for superposition-structured ones. Our analysis demonstrates that both gradient algorithms converge linearly to the statistical error even though the strong convexity of the objective function is absent under the high-dimensional settings. Moreover our result is sharp (up to a constant factor) in the sense of matching the phase transition theory of the corresponding model with independent samples. To the best of our knowledge, this analysis constitutes first non-asymptotic optimization guarantees of the linear rate for regularized estimation in high-dimensional VAR models. Numerical results are provided to support our theoretical analysis.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.