Movatterモバイル変換


[0]ホーム

URL:


Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity

Part ofAdvances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedbackBibtexMetaReviewPaperReviewSupplemental

Authors

Kaiqing Zhang, Sham Kakade, Tamer Basar, Lin Yang

Abstract

Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the cornerstones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the planning phases, and avoids the non-stationarity problem when all agents are improving their policies simultaneously using samples. Though intuitive and widely-used, the sample complexity of model-based MARL algorithms has been investigated relatively much less often. In this paper, we aim to address the fundamental open question about the sample complexity of model-based MARL. We study arguably the most basic MARL setting: two-player discounted zero-sum Markov games, given only access to a generative model of state transition. We show that model-based MARL achieves a sample complexity of $\tilde \cO(|\cS||\cA||\cB|(1-\gamma)^{-3}\epsilon^{-2})$ for finding the Nash equilibrium (NE) \emph{value} up to some $\epsilon$ error, and the $\epsilon$-NE \emph{policies}, where $\gamma$ is the discount factor, and $\cS,\cA,\cB$ denote the state space, and the action spaces for the two agents. We also show that this method is near-minimax optimal with a tight dependence on $1-\gamma$ and $|\cS|$ by providing a lower bound of $\Omega(|\cS|(|\cA|+|\cB|)(1-\gamma)^{-3}\epsilon^{-2})$. Our results justify the efficiency of this simple model-based approach in the multi-agent RL setting.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp