Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)
Cyrille Combettes, Sebastian Pokutta
Matching pursuit algorithms are an important class of algorithms in signal processing and machine learning. We present a blended matching pursuit algorithm, combining coordinate descent-like steps with stronger gradient descent steps, for minimizing a smooth convex function over a linear space spanned by a set of atoms. We derive sublinear to linear convergence rates according to the smoothness and sharpness orders of the function and demonstrate computational superiority of our approach. In particular, we derive linear rates for a large class of non-strongly convex functions, and we demonstrate in experiments that our algorithm enjoys very fast rates of convergence and wall-clock speed while maintaining a sparsity of iterates very comparable to that of the (much slower) orthogonal matching pursuit.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.