Movatterモバイル変換


[0]ホーム

URL:


On Coresets for Logistic Regression

Part ofAdvances in Neural Information Processing Systems 31 (NeurIPS 2018)

BibtexMetadataPaperReviewsSupplemental

Authors

Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, David Woodruff

Abstract

Coresets are one of the central methods to facilitate the analysis of large data. We continue a recent line of research applying the theory of coresets to logistic regression. First, we show the negative result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable worst-case instances we introduce a complexity measure $\mu(X)$, which quantifies the hardness of compressing a data set for logistic regression. $\mu(X)$ has an intuitive statistical interpretation that may be of independent interest. For data sets with bounded $\mu(X)$-complexity, we show that a novel sensitivity sampling scheme produces the first provably sublinear $(1\pm\eps)$-coreset. We illustrate the performance of our method by comparing to uniform sampling as well as to state of the art methods in the area. The experiments are conducted on real world benchmark data for logistic regression.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp