Movatterモバイル変換


[0]ホーム

URL:


A Conditional Multinomial Mixture Model for Superset Label Learning

Part ofAdvances in Neural Information Processing Systems 25 (NIPS 2012)

BibtexMetadataPaper

Authors

Liping Liu, Thomas G. Dietterich

Abstract

In the superset label learning problem (SLL), each training instance provides a set of candidate labels of which one is the true label of the instance. As in ordinary regression, the candidate label set is a noisy version of the true label. In this work, we solve the problem by maximizing the likelihood of the candidate label sets of training instances. We propose a probabilistic model, the Logistic Stick- Breaking Conditional Multinomial Model (LSB-CMM), to do the job. The LSB- CMM is derived from the logistic stick-breaking process. It first maps data points to mixture components and then assigns to each mixture component a label drawn from a component-specific multinomial distribution. The mixture components can capture underlying structure in the data, which is very useful when the model is weakly supervised. This advantage comes at little cost, since the model introduces few additional parameters. Experimental tests on several real-world problems with superset labels show results that are competitive or superior to the state of the art. The discovered underlying structures also provide improved explanations of the classification predictions.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp