Movatterモバイル変換


[0]ホーム

URL:


From Deformations to Parts: Motion-based Segmentation of 3D Objects

Part ofAdvances in Neural Information Processing Systems 25 (NIPS 2012)

BibtexMetadataPaperSupplemental

Authors

Soumya Ghosh, Matthew Loper, Erik B. Sudderth, Michael J. Black

Abstract

We develop a method for discovering the parts of an articulated object from aligned meshes capturing various three-dimensional (3D) poses. We adapt the distance dependent Chinese restaurant process (ddCRP) to allow nonparametric discovery of a potentially unbounded number of parts, while simultaneously guaranteeing a spatially connected segmentation. To allow analysis of datasets in which object instances have varying shapes, we model part variability across poses via affine transformations. By placing a matrix normal-inverse-Wishart prior on these affine transformations, we develop a ddCRP Gibbs sampler which tractably marginalizes over transformation uncertainty. Analyzing a dataset of humans captured in dozens of poses, we infer parts which provide quantitatively better motion predictions than conventional clustering methods.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp