Movatterモバイル変換


[0]ホーム

URL:


Provable ICA with Unknown Gaussian Noise, with Implications for Gaussian Mixtures and Autoencoders

Part ofAdvances in Neural Information Processing Systems 25 (NIPS 2012)

BibtexMetadataPaperSupplemental

Authors

Sanjeev Arora, Rong Ge, Ankur Moitra, Sushant Sachdeva

Abstract

We present a new algorithm for Independent Component Analysis (ICA) which has provable performance guarantees. In particular, suppose we are given samples of the form $y = Ax + \eta$ where $A$ is an unknown $n \times n$ matrix and $x$ is chosen uniformly at random from $\{+1, -1\}^n$, $\eta$ is an $n$-dimensional Gaussian random variable with unknown covariance $\Sigma$: We give an algorithm that provable recovers $A$ and $\Sigma$ up to an additive $\epsilon$ whose running time and sample complexity are polynomial in $n$ and $1 / \epsilon$. To accomplish this, we introduce a novel ``quasi-whitening'' step that may be useful in other contexts in which the covariance of Gaussian noise is not known in advance. We also give a general framework for finding all local optima of a function (given an oracle for approximately finding just one) and this is a crucial step in our algorithm, one that has been overlooked in previous attempts, and allows us to control the accumulation of error when we find the columns of $A$ one by one via local search.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp