Movatterモバイル変換


[0]ホーム

URL:


Informed Projections

Part ofAdvances in Neural Information Processing Systems 15 (NIPS 2002)

BibtexMetadataPaper

Authors

David Cohn

Abstract

Low rank approximation techniques are widespread in pattern recogni- tion research — they include Latent Semantic Analysis (LSA), Proba- bilistic LSA, Principal Components Analysus (PCA), the Generative As- pect Model, and many forms of bibliometric analysis. All make use of a low-dimensional manifold onto which data are projected. Such techniques are generally “unsupervised,” which allows them to model data in the absence of labels or categories. With many practi- cal problems, however, some prior knowledge is available in the form of context. In this paper, I describe a principled approach to incorpo- rating such information, and demonstrate its application to PCA-based approximations of several data sets.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp