Movatterモバイル変換


[0]ホーム

URL:


An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition

Part ofAdvances in Neural Information Processing Systems 15 (NIPS 2002)

BibtexMetadataPaper

Authors

Samy Bengio

Abstract

This paper presents a novel Hidden Markov Model architecture to model the joint probability of pairs of asynchronous sequences de(cid:173) scribing the same event. It is based on two other Markovian models, namely Asynchronous Input/ Output Hidden Markov Models and Pair Hidden Markov Models. An EM algorithm to train the model is presented, as well as a Viterbi decoder that can be used to ob(cid:173) tain the optimal state sequence as well as the alignment between the two sequences. The model has been tested on an audio-visual speech recognition task using the M2VTS database and yielded robust performances under various noise conditions.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp