Movatterモバイル変換


[0]ホーム

URL:


Training Methods for Adaptive Boosting of Neural Networks

Holger Schwenk, Yoshua Bengio

Advances in Neural Information Processing Systems 10 (NIPS 1997)

BibtexMetadataPaper

Abstract

"Boosting" is a general method for improving the performance of any learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [5]. It has been ap(cid:173) plied with great success to several benchmark machine learning problems using rather simple learning algorithms [4], and decision trees [1, 2, 6]. In this paper we use AdaBoost to improve the performances of neural networks. We compare training methods based on sampling the training set and weighting the cost function. Our system achieves about 1.4% error on a data base of online handwritten digits from more than 200 writers. Adaptive boosting of a multi-layer network achieved 1.5% error on the UCI Letters and 8.1 % error on the UCI satellite data set.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2026 Movatter.jp