[edit]
Regularization-free Diffeomorphic Temporal Alignment Nets
Ron Shapira Weber, Oren FreifeldProceedings of the 40th International Conference on Machine Learning, PMLR 202:30794-30826, 2023.
Abstract
In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.
Cite this Paper
BibTeX
@InProceedings{pmlr-v202-shapira-weber23a, title = {Regularization-free Diffeomorphic Temporal Alignment Nets}, author = {Shapira Weber, Ron and Freifeld, Oren}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {30794--30826}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/shapira-weber23a/shapira-weber23a.pdf}, url = {https://proceedings.mlr.press/v202/shapira-weber23a.html}, abstract = {In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.}}
Endnote
%0 Conference Paper%T Regularization-free Diffeomorphic Temporal Alignment Nets%A Ron Shapira Weber%A Oren Freifeld%B Proceedings of the 40th International Conference on Machine Learning%C Proceedings of Machine Learning Research%D 2023%E Andreas Krause%E Emma Brunskill%E Kyunghyun Cho%E Barbara Engelhardt%E Sivan Sabato%E Jonathan Scarlett%F pmlr-v202-shapira-weber23a%I PMLR%P 30794--30826%U https://proceedings.mlr.press/v202/shapira-weber23a.html%V 202%X In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.
APA
Shapira Weber, R. & Freifeld, O.. (2023). Regularization-free Diffeomorphic Temporal Alignment Nets.Proceedings of the 40th International Conference on Machine Learning, inProceedings of Machine Learning Research 202:30794-30826 Available from https://proceedings.mlr.press/v202/shapira-weber23a.html.