Movatterモバイル変換


[0]ホーム

URL:



Facebook
Postgres Pro
Facebook
Downloads
50.5. Planner/Optimizer
Prev UpChapter 50. Overview of PostgreSQL InternalsHome Next

50.5. Planner/Optimizer#

The task of theplanner/optimizer is to create an optimal execution plan. A given SQL query (and hence, a query tree) can be actually executed in a wide variety of different ways, each of which will produce the same set of results. If it is computationally feasible, the query optimizer will examine each of these possible execution plans, ultimately selecting the execution plan that is expected to run the fastest.

Note

In some situations, examining each possible way in which a query can be executed would take an excessive amount of time and memory. In particular, this occurs when executing queries involving large numbers of join operations. In order to determine a reasonable (not necessarily optimal) query plan in a reasonable amount of time,PostgreSQL uses aGenetic Query Optimizer (seeChapter 60) when the number of joins exceeds a threshold (seegeqo_threshold).

The planner's search procedure actually works with data structures calledpaths, which are simply cut-down representations of plans containing only as much information as the planner needs to make its decisions. After the cheapest path is determined, a full-fledgedplan tree is built to pass to the executor. This represents the desired execution plan in sufficient detail for the executor to run it. In the rest of this section we'll ignore the distinction between paths and plans.

50.5.1. Generating Possible Plans#

The planner/optimizer starts by generating plans for scanning each individual relation (table) used in the query. The possible plans are determined by the available indexes on each relation. There is always the possibility of performing a sequential scan on a relation, so a sequential scan plan is always created. Assume an index is defined on a relation (for example a B-tree index) and a query contains the restrictionrelation.attribute OPR constant. Ifrelation.attribute happens to match the key of the B-tree index andOPR is one of the operators listed in the index'soperator class, another plan is created using the B-tree index to scan the relation. If there are further indexes present and the restrictions in the query happen to match a key of an index, further plans will be considered. Index scan plans are also generated for indexes that have a sort ordering that can match the query'sORDER BY clause (if any), or a sort ordering that might be useful for merge joining (see below).

If the query requires joining two or more relations, plans for joining relations are considered after all feasible plans have been found for scanning single relations. The three available join strategies are:

  • nested loop join: The right relation is scanned once for every row found in the left relation. This strategy is easy to implement but can be very time consuming. (However, if the right relation can be scanned with an index scan, this can be a good strategy. It is possible to use values from the current row of the left relation as keys for the index scan of the right.)

  • merge join: Each relation is sorted on the join attributes before the join starts. Then the two relations are scanned in parallel, and matching rows are combined to form join rows. This kind of join is attractive because each relation has to be scanned only once. The required sorting might be achieved either by an explicit sort step, or by scanning the relation in the proper order using an index on the join key.

  • hash join: the right relation is first scanned and loaded into a hash table, using its join attributes as hash keys. Next the left relation is scanned and the appropriate values of every row found are used as hash keys to locate the matching rows in the table.

When the query involves more than two relations, the final result must be built up by a tree of join steps, each with two inputs. The planner examines different possible join sequences to find the cheapest one.

If the query uses fewer thangeqo_threshold relations, a near-exhaustive search is conducted to find the best join sequence. The planner preferentially considers joins between any two relations for which there exists a corresponding join clause in theWHERE qualification (i.e., for which a restriction likewhere rel1.attr1=rel2.attr2 exists). Join pairs with no join clause are considered only when there is no other choice, that is, a particular relation has no available join clauses to any other relation. All possible plans are generated for every join pair considered by the planner, and the one that is (estimated to be) the cheapest is chosen.

Whengeqo_threshold is exceeded, the join sequences considered are determined by heuristics, as described inChapter 60. Otherwise the process is the same.

The finished plan tree consists of sequential or index scans of the base relations, plus nested-loop, merge, or hash join nodes as needed, plus any auxiliary steps needed, such as sort nodes or aggregate-function calculation nodes. Most of these plan node types have the additional ability to doselection (discarding rows that do not meet a specified Boolean condition) andprojection (computation of a derived column set based on given column values, that is, evaluation of scalar expressions where needed). One of the responsibilities of the planner is to attach selection conditions from theWHERE clause and computation of required output expressions to the most appropriate nodes of the plan tree.


Prev Up Next
50.4. ThePostgreSQL Rule System Home 50.6. Executor
pdfepub
Go to PostgreSQL 17
By continuing to browse this website, you agree to the use of cookies. Go toPrivacy Policy.

[8]ページ先頭

©2009-2025 Movatter.jp