Movatterモバイル変換


[0]ホーム

URL:



Facebook
Postgres Pro
Facebook
Downloads
F.17. hstore — hstore key/value datatype
Prev UpAppendix F. Additional Supplied Modules and ExtensionsHome Next

F.17. hstore — hstore key/value datatype#

This module implements thehstore data type for storing sets of key/value pairs within a singlePostgreSQL value. This can be useful in various scenarios, such as rows with many attributes that are rarely examined, or semi-structured data. Keys and values are simply text strings.

This module is consideredtrusted, that is, it can be installed by non-superusers who haveCREATE privilege on the current database.

F.17.1. hstore External Representation#

The text representation of anhstore, used for input and output, includes zero or morekey=>value pairs separated by commas. Some examples:

k => vfoo => bar, baz => whatever"1-a" => "anything at all"

The order of the pairs is not significant (and may not be reproduced on output). Whitespace between pairs or around the=> sign is ignored. Double-quote keys and values that include whitespace, commas,=s or>s. To include a double quote or a backslash in a key or value, escape it with a backslash.

Each key in anhstore is unique. If you declare anhstore with duplicate keys, only one will be stored in thehstore and there is no guarantee as to which will be kept:

SELECT 'a=>1,a=>2'::hstore;  hstore---------- "a"=>"1"

A value (but not a key) can be an SQLNULL. For example:

key => NULL

TheNULL keyword is case-insensitive. Double-quote theNULL to treat it as the ordinary stringNULL.

Note

Keep in mind that thehstore text format, when used for input, appliesbefore any required quoting or escaping. If you are passing anhstore literal via a parameter, then no additional processing is needed. But if you're passing it as a quoted literal constant, then any single-quote characters and (depending on the setting of thestandard_conforming_strings configuration parameter) backslash characters need to be escaped correctly. SeeSection 4.1.2.1 for more on the handling of string constants.

On output, double quotes always surround keys and values, even when it's not strictly necessary.

F.17.2. hstore Operators and Functions#

The operators provided by thehstore module are shown inTable F.6, the functions inTable F.7.

Table F.6. hstore Operators

Operator

Description

Example(s)

hstore->texttext

Returns value associated with given key, orNULL if not present.

'a=>x, b=>y'::hstore -> 'a'x

hstore->text[]text[]

Returns values associated with given keys, orNULL if not present.

'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a']{"z","x"}

hstore||hstorehstore

Concatenates twohstores.

'a=>b, c=>d'::hstore || 'c=>x, d=>q'::hstore"a"=>"b", "c"=>"x", "d"=>"q"

hstore?textboolean

Doeshstore contain key?

'a=>1'::hstore ? 'a't

hstore?&text[]boolean

Doeshstore contain all the specified keys?

'a=>1,b=>2'::hstore ?& ARRAY['a','b']t

hstore?|text[]boolean

Doeshstore contain any of the specified keys?

'a=>1,b=>2'::hstore ?| ARRAY['b','c']t

hstore@>hstoreboolean

Does left operand contain right?

'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1't

hstore<@hstoreboolean

Is left operand contained in right?

'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL'f

hstore-texthstore

Deletes key from left operand.

'a=>1, b=>2, c=>3'::hstore - 'b'::text"a"=>"1", "c"=>"3"

hstore-text[]hstore

Deletes keys from left operand.

'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b']"c"=>"3"

hstore-hstorehstore

Deletes pairs from left operand that match pairs in the right operand.

'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore"a"=>"1", "c"=>"3"

anyelement#=hstoreanyelement

Replaces fields in the left operand (which must be a composite type) with matching values fromhstore.

ROW(1,3) #= 'f1=>11'::hstore(11,3)

%%hstoretext[]

Convertshstore to an array of alternating keys and values.

%% 'a=>foo, b=>bar'::hstore{a,foo,b,bar}

%#hstoretext[]

Convertshstore to a two-dimensional key/value array.

%# 'a=>foo, b=>bar'::hstore{{a,foo},{b,bar}}


Table F.7. hstore Functions

Function

Description

Example(s)

hstore (record ) →hstore

Constructs anhstore from a record or row.

hstore(ROW(1,2))"f1"=>"1", "f2"=>"2"

hstore (text[] ) →hstore

Constructs anhstore from an array, which may be either a key/value array, or a two-dimensional array.

hstore(ARRAY['a','1','b','2'])"a"=>"1", "b"=>"2"

hstore(ARRAY[['c','3'],['d','4']])"c"=>"3", "d"=>"4"

hstore (text[],text[] ) →hstore

Constructs anhstore from separate key and value arrays.

hstore(ARRAY['a','b'], ARRAY['1','2'])"a"=>"1", "b"=>"2"

hstore (text,text ) →hstore

Makes a single-itemhstore.

hstore('a', 'b')"a"=>"b"

akeys (hstore ) →text[]

Extracts anhstore's keys as an array.

akeys('a=>1,b=>2'){a,b}

skeys (hstore ) →setof text

Extracts anhstore's keys as a set.

skeys('a=>1,b=>2')

ab

avals (hstore ) →text[]

Extracts anhstore's values as an array.

avals('a=>1,b=>2'){1,2}

svals (hstore ) →setof text

Extracts anhstore's values as a set.

svals('a=>1,b=>2')

12

hstore_to_array (hstore ) →text[]

Extracts anhstore's keys and values as an array of alternating keys and values.

hstore_to_array('a=>1,b=>2'){a,1,b,2}

hstore_to_matrix (hstore ) →text[]

Extracts anhstore's keys and values as a two-dimensional array.

hstore_to_matrix('a=>1,b=>2'){{a,1},{b,2}}

hstore_to_json (hstore ) →json

Converts anhstore to ajson value, converting all non-null values to JSON strings.

This function is used implicitly when anhstore value is cast tojson.

hstore_to_json('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4'){"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_jsonb (hstore ) →jsonb

Converts anhstore to ajsonb value, converting all non-null values to JSON strings.

This function is used implicitly when anhstore value is cast tojsonb.

hstore_to_jsonb('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4'){"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_json_loose (hstore ) →json

Converts anhstore to ajson value, but attempts to distinguish numerical and Boolean values so they are unquoted in the JSON.

hstore_to_json_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4'){"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}

hstore_to_jsonb_loose (hstore ) →jsonb

Converts anhstore to ajsonb value, but attempts to distinguish numerical and Boolean values so they are unquoted in the JSON.

hstore_to_jsonb_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4'){"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}

slice (hstore,text[] ) →hstore

Extracts a subset of anhstore containing only the specified keys.

slice('a=>1,b=>2,c=>3'::hstore, ARRAY['b','c','x'])"b"=>"2", "c"=>"3"

each (hstore ) →setof record (keytext,valuetext )

Extracts anhstore's keys and values as a set of records.

select * from each('a=>1,b=>2')

 key | value-----+------- a   | 1 b   | 2

exist (hstore,text ) →boolean

Doeshstore contain key?

exist('a=>1', 'a')t

defined (hstore,text ) →boolean

Doeshstore contain a non-NULL value for key?

defined('a=>NULL', 'a')f

delete (hstore,text ) →hstore

Deletes pair with matching key.

delete('a=>1,b=>2', 'b')"a"=>"1"

delete (hstore,text[] ) →hstore

Deletes pairs with matching keys.

delete('a=>1,b=>2,c=>3', ARRAY['a','b'])"c"=>"3"

delete (hstore,hstore ) →hstore

Deletes pairs matching those in the second argument.

delete('a=>1,b=>2', 'a=>4,b=>2'::hstore)"a"=>"1"

populate_record (anyelement,hstore ) →anyelement

Replaces fields in the left operand (which must be a composite type) with matching values fromhstore.

populate_record(ROW(1,2), 'f1=>42'::hstore)(42,2)


In addition to these operators and functions, values of thehstore type can be subscripted, allowing them to act like associative arrays. Only a single subscript of typetext can be specified; it is interpreted as a key and the corresponding value is fetched or stored. For example,

CREATE TABLE mytable (h hstore);INSERT INTO mytable VALUES ('a=>b, c=>d');SELECT h['a'] FROM mytable; h--- b(1 row)UPDATE mytable SET h['c'] = 'new';SELECT h FROM mytable;          h---------------------- "a"=>"b", "c"=>"new"(1 row)

A subscripted fetch returnsNULL if the subscript isNULL or that key does not exist in thehstore. (Thus, a subscripted fetch is not greatly different from the-> operator.) A subscripted update fails if the subscript isNULL; otherwise, it replaces the value for that key, adding an entry to thehstore if the key does not already exist.

F.17.3. Indexes#

hstore has GiST and GIN index support for the@>,?,?& and?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);CREATE INDEX hidx ON testhstore USING GIN (h);

gist_hstore_ops GiST opclass approximates a set of key/value pairs as a bitmap signature. Its optional integer parametersiglen determines the signature length in bytes. The default length is 16 bytes. Valid values of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX hidx ON testhstore USING GIST (h gist_hstore_ops(siglen=32));

hstore also supportsbtree orhash indexes for the= operator. This allowshstore columns to be declaredUNIQUE, or to be used inGROUP BY,ORDER BY orDISTINCT expressions. The sort ordering forhstore values is not particularly useful, but these indexes may be useful for equivalence lookups. Create indexes for= comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);CREATE INDEX hidx ON testhstore USING HASH (h);

F.17.4. Examples#

Add a key, or update an existing key with a new value:

UPDATE tab SET h['c'] = '3';

Another way to do the same thing is:

UPDATE tab SET h = h || hstore('c', '3');

If multiple keys are to be added or changed in one operation, the concatenation approach is more efficient than subscripting:

UPDATE tab SET h = h || hstore(array['q', 'w'], array['11', '12']);

Delete a key:

UPDATE tab SET h = delete(h, 'k1');

Convert arecord to anhstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);INSERT INTO test VALUES (123, 'foo', 'bar');SELECT hstore(t) FROM test AS t;                   hstore--------------------------------------------- "col1"=>"123", "col2"=>"foo", "col3"=>"bar"(1 row)

Convert anhstore to a predefinedrecord type:

CREATE TABLE test (col1 integer, col2 text, col3 text);SELECT * FROM populate_record(null::test,                              '"col1"=>"456", "col2"=>"zzz"'); col1 | col2 | col3------+------+------  456 | zzz  |(1 row)

Modify an existing record using the values from anhstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);INSERT INTO test VALUES (123, 'foo', 'bar');SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s; col1 | col2 | col3------+------+------  123 | foo  | baz(1 row)

F.17.5. Statistics#

Thehstore type, because of its intrinsic liberality, could contain a lot of different keys. Checking for valid keys is the task of the application. The following examples demonstrate several techniques for checking keys and obtaining statistics.

Simple example:

SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');

Using a table:

CREATE TABLE stat AS SELECT (each(h)).key, (each(h)).value FROM testhstore;

Online statistics:

SELECT key, count(*) FROM  (SELECT (each(h)).key FROM testhstore) AS stat  GROUP BY key  ORDER BY count DESC, key;    key    | count-----------+------- line      |   883 query     |   207 pos       |   203 node      |   202 space     |   197 status    |   195 public    |   194 title     |   190 org       |   189...................

F.17.6. Compatibility#

As of PostgreSQL 9.0,hstore uses a different internal representation than previous versions. This presents no obstacle for dump/restore upgrades since the text representation (used in the dump) is unchanged.

In the event of a binary upgrade, upward compatibility is maintained by having the new code recognize old-format data. This will entail a slight performance penalty when processing data that has not yet been modified by the new code. It is possible to force an upgrade of all values in a table column by doing anUPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || '';

Another way to do it is:

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';

TheALTER TABLE method requires anACCESS EXCLUSIVE lock on the table, but does not result in bloating the table with old row versions.

F.17.7. Transforms#

Additional extensions are available that implement transforms for thehstore type for the languages PL/Perl and PL/Python. The extensions for PL/Perl are calledhstore_plperl andhstore_plperlu, for trusted and untrusted PL/Perl. If you install these transforms and specify them when creating a function,hstore values are mapped to Perl hashes. The extension for PL/Python is calledhstore_plpython3u. If you use it,hstore values are mapped to Python dictionaries.

Caution

It is strongly recommended that the transform extensions be installed in the same schema ashstore. Otherwise there are installation-time security hazards if a transform extension's schema contains objects defined by a hostile user.

F.17.8. Authors#

Oleg Bartunov<oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev<teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia

Additional enhancements by Andrew Gierth<andrew@tao11.riddles.org.uk>, United Kingdom


Prev Up Next
F.16. fuzzystrmatch — determine string similarities and distance Home F.18. intagg — integer aggregator and enumerator
pdfepub
Go to PostgreSQL 17
By continuing to browse this website, you agree to the use of cookies. Go toPrivacy Policy.

[8]ページ先頭

©2009-2025 Movatter.jp