Movatterモバイル変換


[0]ホーム

URL:



Facebook
Postgres Pro
Facebook
Downloads
F.57. rum — an access method to work with theRUM indexes
Prev UpAppendix F. Additional Supplied Modules and Extensions Shipped inpostgrespro-std-17-contribHome Next

F.57. rum — an access method to work with theRUM indexes#

F.57.1. Introduction#

Therum module provides access method to work with theRUM indexes. It is based on theGIN access method code.

GIN index allows you to perform fast full-text search usingtsvector andtsquery types. However, full-text search withGIN index has some performance issues because positional and other additional information is not stored.

RUM solves these issues by storing additional information in a posting tree. As compared toGIN,RUM index has the following benefits:

  • Faster ranking. Ranking requires positional information. And after the index scan we do not need an additional heap scan to retrieve lexeme positions becauseRUM index stores them.

  • Faster phrase search. This improvement is related to the previous one as phrase search also needs positional information.

  • Faster ordering by timestamp.RUM index stores additional information together with lexemes, so it is not necessary to perform a heap scan.

  • A possibility to perform depth-first search and therefore return first results immediately.

The drawback ofRUM is that it has slower build and insert time as compared toGIN becauseRUM stores additional information together with keys and uses generic WAL records.

F.57.2. Installation#

rum is aPostgres Pro Standard extension and it has no special prerequisites.

Install extension as follows:

$ psqldbname -c "CREATE EXTENSION rum"

F.57.3. Common Operators#

The operators provided by therum module are shown inTable F.35:

Table F.35. rum Operators

OperatorReturnsDescription
tsvector<=>tsqueryfloat4Returns distance betweentsvector andtsquery values.
timestamp<=>timestampfloat8Returns distance between twotimestamp values.
timestamp<=|timestampfloat8Returns distance only for ascendingtimestamp values.
timestamp|=>timestampfloat8Returns distance only for descendingtimestamp values.

Note

rum introduces its own ranking function that is executed inside the<=> operator. It calculates the score (inverted distance) using the specified normalization method. This function is a combination ofts_rank andts_rank_cd (seeSection 9.13 for details). Whilets_rank does not support logical operators andts_rank_cd works poorly withOR queries, therum-specific ranking function overcomes these drawbacks.

F.57.4. Operator Classes#

Therum extension provides the following operator classes:

rum_tsvector_ops

Storestsvector lexemes with positional information. Supports ordering by<=> operator and prefix search.

rum_tsvector_hash_ops

Stores hash oftsvector lexemes with positional information. Supports ordering by<=> operator, but does not support prefix search.

rum_tsvector_addon_ops

Storestsvector lexemes with additional data of any type supported byRUM.

Note

To use therum_tsvector_addon_ops operator class, when creating theRUM index withCREATE INDEX, specify theattach andto storage parameters in theWITH clause.

rum_tsvector_hash_addon_ops

Storestsvector lexemes with additional data of any type supported byRUM. Does not support prefix search.

rum_tsquery_ops

Stores branches of query tree in additional information.

rum_anyarray_ops

Storesanyarray elements with length of the array. Supports ordering by <=> operator.

Indexable operators:&& @> <@ = %

rum_anyarray_addon_ops

Storesanyarray elements with additional data of any type supported byRUM.

rum_type_ops

Stores lexemes of the corresponding type with positional information. Thetype placeholder in the class name must be substituted by one of the following type names:int2,int4,int8,float4,float8,money,oid,timestamp,timestamptz,time,timetz,date,interval,macaddr,inet,cidr,text,varchar,char,bytea,bit,varbit,numeric.

rum_type_ops supports ordering by<=>,<=|, and|=> operators. This operator class can be used together withrum_tsvector_addon_ops,rum_tsvector_hash_addon_ops, andrum_anyarray_addon_ops operator classes.

Supported indexable operators depend on the data type:

  • < <= = >= > <=> <=| |=> are supported forint2,int4,int8,float4,float8,money,oid,timestamp,timestamptz.

  • < <= = >= > are supported fortime,timetz,date,interval,macaddr,inet,cidr,text,varchar,char,bytea,bit,varbit,numeric.

Note

The following operator classes are now deprecated:rum_tsvector_timestamp_ops,rum_tsvector_timestamptz_ops,rum_tsvector_hash_timestamp_ops,rum_tsvector_hash_timestamptz_ops.

F.57.5. Examples#

F.57.5.1.  rum_tsvector_ops Example#

Let's assume we have the following table:

CREATE TABLE test_rum(t text, a tsvector);CREATE TRIGGER tsvectorupdateBEFORE UPDATE OR INSERT ON test_rumFOR EACH ROW EXECUTE PROCEDURE tsvector_update_trigger('a', 'pg_catalog.english', 't');INSERT INTO test_rum(t) VALUES ('The situation is most beautiful');INSERT INTO test_rum(t) VALUES ('It is a beautiful');INSERT INTO test_rum(t) VALUES ('It looks like a beautiful place');

Then we can create a new index:

CREATE INDEX rumidx ON test_rum USING rum (a rum_tsvector_ops);

And we can execute the following queries:

SELECT t, a <=> to_tsquery('english', 'beautiful | place') AS rank    FROM test_rum    WHERE a @@ to_tsquery('english', 'beautiful | place')    ORDER BY a <=> to_tsquery('english', 'beautiful | place');                t                |   rank---------------------------------+----------- The situation is most beautiful | 0.0303964 It is a beautiful               | 0.0303964 It looks like a beautiful place | 0.0607927(3 rows)SELECT t, a <=> to_tsquery('english', 'place | situation') AS rank    FROM test_rum    WHERE a @@ to_tsquery('english', 'place | situation')    ORDER BY a <=> to_tsquery('english', 'place | situation');                t                |   rank---------------------------------+----------- The situation is most beautiful | 0.0303964 It looks like a beautiful place | 0.0303964(2 rows)

F.57.5.2.  rum_tsvector_addon_ops Example#

Let's assume we have the following table:

CREATE TABLE tsts (id int, t tsvector, d timestamp);\copy tsts from 'rum/data/tsts.data'CREATE INDEX tsts_idx ON tsts USING rum (t rum_tsvector_addon_ops, d)    WITH (attach = 'd', to = 't');

Now we can execute the following queries:

EXPLAIN (costs off)    SELECT id, d, d <=> '2016-05-16 14:21:25' FROM tsts WHERE t @@ 'wr&qh' ORDER BY d <=> '2016-05-16 14:21:25' LIMIT 5;                                    QUERY PLAN                                     ----------------------------------------------------------------------------------- Limit   ->  Index Scan using tsts_idx on tsts         Index Cond: (t @@ '''wr'' & ''qh'''::tsquery)         Order By: (d <=> 'Mon May 16 14:21:25 2016'::timestamp without time zone)(4 rows)SELECT id, d, d <=> '2016-05-16 14:21:25' FROM tsts WHERE t @@ 'wr&qh' ORDER BY d <=> '2016-05-16 14:21:25' LIMIT 5; id  |                d                |   ?column?    -----+---------------------------------+--------------- 355 | Mon May 16 14:21:22.326724 2016 |      2.673276 354 | Mon May 16 13:21:22.326724 2016 |   3602.673276 371 | Tue May 17 06:21:22.326724 2016 |  57597.326724 406 | Wed May 18 17:21:22.326724 2016 | 183597.326724 415 | Thu May 19 02:21:22.326724 2016 | 215997.326724(5 rows)

F.57.5.3.  rum_tsquery_ops Example#

Suppose we have the table:

CREATE TABLE query (q tsquery, tag text);INSERT INTO query VALUES ('supernova & star', 'sn'),    ('black', 'color'),    ('big & bang & black & hole', 'bang'),    ('spiral & galaxy', 'shape'),    ('black & hole', 'color');CREATE INDEX query_idx ON query USING rum(q);

We can execute the following fast query:

SELECT * FROM query    WHERE to_tsvector('black holes never exists before we think about them') @@ q;        q         |  tag  ------------------+------- 'black'          | color 'black' & 'hole' | color(2 rows)

F.57.5.4.  rum_anyarray_ops Example#

Let's assume we have the following table:

CREATE TABLE test_array (i int2[]);INSERT INTO test_array VALUES ('{}'), ('{0}'), ('{1,2,3,4}'), ('{1,2,3}'), ('{1,2}'), ('{1}');CREATE INDEX idx_array ON test_array USING rum (i rum_anyarray_ops);

Now we can execute the following query using index scan:

SET enable_seqscan TO off;EXPLAIN (COSTS OFF) SELECT * FROM test_array WHERE i && '{1}' ORDER BY i <=> '{1}' ASC;                QUERY PLAN------------------------------------------ Index Scan using idx_array on test_array   Index Cond: (i && '{1}'::smallint[])   Order By: (i <=> '{1}'::smallint[])(3 rows)SELECT * FROM test_array WHERE i && '{1}' ORDER BY i <=> '{1}' ASC;     i----------- {1} {1,2} {1,2,3} {1,2,3,4}(4 rows)

F.57.6. Authors#

Alexander Korotkov

Oleg Bartunov

Teodor Sigaev


Prev Up Next
F.56. ptrack — a block-level incremental backup engine forPostgres Pro Home F.58. seg — a datatype for line segments or floating point intervals
pdfepub
Go to Postgres Pro Standard 17
By continuing to browse this website, you agree to the use of cookies. Go toPrivacy Policy.

[8]ページ先頭

©2009-2025 Movatter.jp