F.57. rum — an access method to work with theRUM indexes | ||||
---|---|---|---|---|
Prev | Up | Appendix F. Additional Supplied Modules and Extensions Shipped inpostgrespro-std-17-contrib | Home | Next |
F.57. rum — an access method to work with theRUM
indexes#
F.57.1. Introduction#
Therum module provides access method to work with theRUM
indexes. It is based on theGIN
access method code.
GIN
index allows you to perform fast full-text search usingtsvector
andtsquery
types. However, full-text search withGIN
index has some performance issues because positional and other additional information is not stored.
RUM
solves these issues by storing additional information in a posting tree. As compared toGIN
,RUM
index has the following benefits:
Faster ranking. Ranking requires positional information. And after the index scan we do not need an additional heap scan to retrieve lexeme positions because
RUM
index stores them.Faster phrase search. This improvement is related to the previous one as phrase search also needs positional information.
Faster ordering by timestamp.
RUM
index stores additional information together with lexemes, so it is not necessary to perform a heap scan.A possibility to perform depth-first search and therefore return first results immediately.
The drawback ofRUM
is that it has slower build and insert time as compared toGIN
becauseRUM
stores additional information together with keys and uses generic WAL records.
F.57.2. Installation#
rum
is aPostgres Pro Standard extension and it has no special prerequisites.
Install extension as follows:
$ psqldbname
-c "CREATE EXTENSION rum"
F.57.3. Common Operators#
The operators provided by therum
module are shown inTable F.35:
Table F.35. rum
Operators
Operator | Returns | Description |
---|---|---|
tsvector <=> tsquery | float4 | Returns distance betweentsvector andtsquery values. |
timestamp <=> timestamp | float8 | Returns distance between twotimestamp values. |
timestamp <=| timestamp | float8 | Returns distance only for ascendingtimestamp values. |
timestamp |=> timestamp | float8 | Returns distance only for descendingtimestamp values. |
Note
rum
introduces its own ranking function that is executed inside the<=>
operator. It calculates the score (inverted distance) using the specified normalization method. This function is a combination ofts_rank
andts_rank_cd
(seeSection 9.13 for details). Whilets_rank
does not support logical operators andts_rank_cd
works poorly withOR
queries, therum
-specific ranking function overcomes these drawbacks.
F.57.4. Operator Classes#
Therum
extension provides the following operator classes:
rum_tsvector_ops
Stores
tsvector
lexemes with positional information. Supports ordering by<=>
operator and prefix search.rum_tsvector_hash_ops
Stores hash of
tsvector
lexemes with positional information. Supports ordering by<=>
operator, but does not support prefix search.rum_tsvector_addon_ops
Stores
tsvector
lexemes with additional data of any type supported byRUM
.rum_tsvector_hash_addon_ops
Stores
tsvector
lexemes with additional data of any type supported byRUM
. Does not support prefix search.rum_tsquery_ops
Stores branches of query tree in additional information.
rum_anyarray_ops
Stores
anyarray
elements with length of the array. Supports ordering by <=> operator.Indexable operators:
&& @> <@ = %
rum_anyarray_addon_ops
Stores
anyarray
elements with additional data of any type supported byRUM
.rum_
type
_opsStores lexemes of the corresponding type with positional information. The
type
placeholder in the class name must be substituted by one of the following type names:int2
,int4
,int8
,float4
,float8
,money
,oid
,timestamp
,timestamptz
,time
,timetz
,date
,interval
,macaddr
,inet
,cidr
,text
,varchar
,char
,bytea
,bit
,varbit
,numeric
.rum_
supports ordering bytype
_ops<=>
,<=|
, and|=>
operators. This operator class can be used together withrum_tsvector_addon_ops
,rum_tsvector_hash_addon_ops
, andrum_anyarray_addon_ops
operator classes.Supported indexable operators depend on the data type:
< <= = >= > <=> <=| |=>
are supported forint2
,int4
,int8
,float4
,float8
,money
,oid
,timestamp
,timestamptz
.< <= = >= >
are supported fortime
,timetz
,date
,interval
,macaddr
,inet
,cidr
,text
,varchar
,char
,bytea
,bit
,varbit
,numeric
.
Note
The following operator classes are now deprecated:rum_tsvector_timestamp_ops
,rum_tsvector_timestamptz_ops
,rum_tsvector_hash_timestamp_ops
,rum_tsvector_hash_timestamptz_ops
.
F.57.5. Examples#
F.57.5.1. rum_tsvector_ops Example#
Let's assume we have the following table:
CREATE TABLE test_rum(t text, a tsvector);CREATE TRIGGER tsvectorupdateBEFORE UPDATE OR INSERT ON test_rumFOR EACH ROW EXECUTE PROCEDURE tsvector_update_trigger('a', 'pg_catalog.english', 't');INSERT INTO test_rum(t) VALUES ('The situation is most beautiful');INSERT INTO test_rum(t) VALUES ('It is a beautiful');INSERT INTO test_rum(t) VALUES ('It looks like a beautiful place');
Then we can create a new index:
CREATE INDEX rumidx ON test_rum USING rum (a rum_tsvector_ops);
And we can execute the following queries:
SELECT t, a <=> to_tsquery('english', 'beautiful | place') AS rank FROM test_rum WHERE a @@ to_tsquery('english', 'beautiful | place') ORDER BY a <=> to_tsquery('english', 'beautiful | place'); t | rank---------------------------------+----------- The situation is most beautiful | 0.0303964 It is a beautiful | 0.0303964 It looks like a beautiful place | 0.0607927(3 rows)SELECT t, a <=> to_tsquery('english', 'place | situation') AS rank FROM test_rum WHERE a @@ to_tsquery('english', 'place | situation') ORDER BY a <=> to_tsquery('english', 'place | situation'); t | rank---------------------------------+----------- The situation is most beautiful | 0.0303964 It looks like a beautiful place | 0.0303964(2 rows)
F.57.5.2. rum_tsvector_addon_ops Example#
Let's assume we have the following table:
CREATE TABLE tsts (id int, t tsvector, d timestamp);\copy tsts from 'rum/data/tsts.data'CREATE INDEX tsts_idx ON tsts USING rum (t rum_tsvector_addon_ops, d) WITH (attach = 'd', to = 't');
Now we can execute the following queries:
EXPLAIN (costs off) SELECT id, d, d <=> '2016-05-16 14:21:25' FROM tsts WHERE t @@ 'wr&qh' ORDER BY d <=> '2016-05-16 14:21:25' LIMIT 5; QUERY PLAN ----------------------------------------------------------------------------------- Limit -> Index Scan using tsts_idx on tsts Index Cond: (t @@ '''wr'' & ''qh'''::tsquery) Order By: (d <=> 'Mon May 16 14:21:25 2016'::timestamp without time zone)(4 rows)SELECT id, d, d <=> '2016-05-16 14:21:25' FROM tsts WHERE t @@ 'wr&qh' ORDER BY d <=> '2016-05-16 14:21:25' LIMIT 5; id | d | ?column? -----+---------------------------------+--------------- 355 | Mon May 16 14:21:22.326724 2016 | 2.673276 354 | Mon May 16 13:21:22.326724 2016 | 3602.673276 371 | Tue May 17 06:21:22.326724 2016 | 57597.326724 406 | Wed May 18 17:21:22.326724 2016 | 183597.326724 415 | Thu May 19 02:21:22.326724 2016 | 215997.326724(5 rows)
F.57.5.3. rum_tsquery_ops Example#
Suppose we have the table:
CREATE TABLE query (q tsquery, tag text);INSERT INTO query VALUES ('supernova & star', 'sn'), ('black', 'color'), ('big & bang & black & hole', 'bang'), ('spiral & galaxy', 'shape'), ('black & hole', 'color');CREATE INDEX query_idx ON query USING rum(q);
We can execute the following fast query:
SELECT * FROM query WHERE to_tsvector('black holes never exists before we think about them') @@ q; q | tag ------------------+------- 'black' | color 'black' & 'hole' | color(2 rows)
F.57.5.4. rum_anyarray_ops Example#
Let's assume we have the following table:
CREATE TABLE test_array (i int2[]);INSERT INTO test_array VALUES ('{}'), ('{0}'), ('{1,2,3,4}'), ('{1,2,3}'), ('{1,2}'), ('{1}');CREATE INDEX idx_array ON test_array USING rum (i rum_anyarray_ops);
Now we can execute the following query using index scan:
SET enable_seqscan TO off;EXPLAIN (COSTS OFF) SELECT * FROM test_array WHERE i && '{1}' ORDER BY i <=> '{1}' ASC; QUERY PLAN------------------------------------------ Index Scan using idx_array on test_array Index Cond: (i && '{1}'::smallint[]) Order By: (i <=> '{1}'::smallint[])(3 rows)SELECT * FROM test_array WHERE i && '{1}' ORDER BY i <=> '{1}' ASC; i----------- {1} {1,2} {1,2,3} {1,2,3,4}(4 rows)