Movatterモバイル変換


[0]ホーム

URL:



Facebook
Postgres Pro
Facebook
Downloads
15.1. How Parallel Query Works
Prev UpChapter 15. Parallel QueryHome Next

15.1. How Parallel Query Works#

When the optimizer determines that parallel query is the fastest execution strategy for a particular query, it will create a query plan that includes aGather orGather Merge node. Here is a simple example:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';                                     QUERY PLAN-------------------------------------------------------------------​------------------ Gather  (cost=1000.00..217018.43 rows=1 width=97)   Workers Planned: 2   ->  Parallel Seq Scan on pgbench_accounts  (cost=0.00..216018.33 rows=1 width=97)         Filter: (filler ~~ '%x%'::text)(4 rows)

In all cases, theGather orGather Merge node will have exactly one child plan, which is the portion of the plan that will be executed in parallel. If theGather orGather Merge node is at the very top of the plan tree, then the entire query will execute in parallel. If it is somewhere else in the plan tree, then only the portion of the plan below it will run in parallel. In the example above, the query accesses only one table, so there is only one plan node other than theGather node itself; since that plan node is a child of theGather node, it will run in parallel.

Using EXPLAIN, you can see the number of workers chosen by the planner. When theGather node is reached during query execution, the process that is implementing the user's session will request a number ofbackground worker processes equal to the number of workers chosen by the planner. The number of background workers that the planner will consider using is limited to at mostmax_parallel_workers_per_gather. The total number of background workers that can exist at any one time is limited by bothmax_worker_processes andmax_parallel_workers. Therefore, it is possible for a parallel query to run with fewer workers than planned, or even with no workers at all. The optimal plan may depend on the number of workers that are available, so this can result in poor query performance. If this occurrence is frequent, consider increasingmax_worker_processes andmax_parallel_workers so that more workers can be run simultaneously or alternatively reducingmax_parallel_workers_per_gather so that the planner requests fewer workers.

Every background worker process that is successfully started for a given parallel query will execute the parallel portion of the plan. The leader will also execute that portion of the plan, but it has an additional responsibility: it must also read all of the tuples generated by the workers. When the parallel portion of the plan generates only a small number of tuples, the leader will often behave very much like an additional worker, speeding up query execution. Conversely, when the parallel portion of the plan generates a large number of tuples, the leader may be almost entirely occupied with reading the tuples generated by the workers and performing any further processing steps that are required by plan nodes above the level of theGather node orGather Merge node. In such cases, the leader will do very little of the work of executing the parallel portion of the plan.

When the node at the top of the parallel portion of the plan isGather Merge rather thanGather, it indicates that each process executing the parallel portion of the plan is producing tuples in sorted order, and that the leader is performing an order-preserving merge. In contrast,Gather reads tuples from the workers in whatever order is convenient, destroying any sort order that may have existed.


Prev Up Next
Chapter 15. Parallel Query Home 15.2. When Can Parallel Query Be Used?
pdfepub
Go to Postgres Pro Standard 17
By continuing to browse this website, you agree to the use of cookies. Go toPrivacy Policy.

[8]ページ先頭

©2009-2025 Movatter.jp