9.3. Mathematical Functions and Operators
Mathematical operators are provided for manyPostgres Pro types. For types without standard mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.
Table 9.2 shows the available mathematical operators.
Table 9.2. Mathematical Operators
Operator | Description | Example | Result |
---|
+ | addition | 2 + 3 | 5 |
- | subtraction | 2 - 3 | -1 |
* | multiplication | 2 * 3 | 6 |
/ | division (integer division truncates the result) | 4 / 2 | 2 |
% | modulo (remainder) | 5 % 4 | 1 |
^ | exponentiation (associates left to right) | 2.0 ^ 3.0 | 8 |
|/ | square root | |/ 25.0 | 5 |
||/ | cube root | ||/ 27.0 | 3 |
! | factorial | 5 ! | 120 |
!! | factorial (prefix operator) | !! 5 | 120 |
@ | absolute value | @ -5.0 | 5 |
& | bitwise AND | 91 & 15 | 11 |
| | bitwise OR | 32 | 3 | 35 |
# | bitwise XOR | 17 # 5 | 20 |
~ | bitwise NOT | ~1 | -2 |
<< | bitwise shift left | 1 << 4 | 16 |
>> | bitwise shift right | 8 >> 2 | 2 |
The bitwise operators work only on integral data types, whereas the others are available for all numeric data types. The bitwise operators are also available for the bit string typesbit
andbit varying
, as shown inTable 9.11.
Table 9.3 shows the available mathematical functions. In the table,dp
indicatesdouble precision
. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument. The functions working withdouble precision
data are mostly implemented on top of the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host system.
Table 9.3. Mathematical Functions
Function | Return Type | Description | Example | Result |
---|
abs(x )
| (same as input) | absolute value | abs(-17.4) | 17.4 |
cbrt(dp )
| dp | cube root | cbrt(27.0) | 3 |
ceil(dp ornumeric )
| (same as input) | nearest integer greater than or equal to argument | ceil(-42.8) | -42 |
ceiling(dp ornumeric )
| (same as input) | nearest integer greater than or equal to argument (same asceil ) | ceiling(-95.3) | -95 |
degrees(dp )
| dp | radians to degrees | degrees(0.5) | 28.6478897565412 |
div(y numeric ,x numeric )
| numeric | integer quotient ofy /x | div(9,4) | 2 |
exp(dp ornumeric )
| (same as input) | exponential | exp(1.0) | 2.71828182845905 |
floor(dp ornumeric )
| (same as input) | nearest integer less than or equal to argument | floor(-42.8) | -43 |
ln(dp ornumeric )
| (same as input) | natural logarithm | ln(2.0) | 0.693147180559945 |
log(dp ornumeric )
| (same as input) | base 10 logarithm | log(100.0) | 2 |
log(b numeric ,x numeric )
| numeric | logarithm to baseb | log(2.0, 64.0) | 6.0000000000 |
mod(y ,x )
| (same as argument types) | remainder ofy /x | mod(9,4) | 1 |
pi()
| dp | “π” constant | pi() | 3.14159265358979 |
power(a dp ,b dp )
| dp | a raised to the power ofb | power(9.0, 3.0) | 729 |
power(a numeric ,b numeric )
| numeric | a raised to the power ofb | power(9.0, 3.0) | 729 |
radians(dp )
| dp | degrees to radians | radians(45.0) | 0.785398163397448 |
round(dp ornumeric )
| (same as input) | round to nearest integer | round(42.4) | 42 |
round(v numeric ,s int )
| numeric | round tos decimal places | round(42.4382, 2) | 42.44 |
sign(dp ornumeric )
| (same as input) | sign of the argument (-1, 0, +1) | sign(-8.4) | -1 |
sqrt(dp ornumeric )
| (same as input) | square root | sqrt(2.0) | 1.4142135623731 |
trunc(dp ornumeric )
| (same as input) | truncate toward zero | trunc(42.8) | 42 |
trunc(v numeric ,s int )
| numeric | truncate tos decimal places | trunc(42.4382, 2) | 42.43 |
width_bucket(operand dp ,b1 dp ,b2 dp ,count int )
| int | return the bucket number to whichoperand would be assigned in a histogram havingcount equal-width buckets spanning the rangeb1 tob2 ; returns0 orcount +1 for an input outside the range | width_bucket(5.35, 0.024, 10.06, 5) | 3 |
width_bucket(operand numeric ,b1 numeric ,b2 numeric ,count int )
| int | return the bucket number to whichoperand would be assigned in a histogram havingcount equal-width buckets spanning the rangeb1 tob2 ; returns0 orcount +1 for an input outside the range | width_bucket(5.35, 0.024, 10.06, 5) | 3 |
width_bucket(operand anyelement ,thresholds anyarray )
| int | return the bucket number to whichoperand would be assigned given an array listing the lower bounds of the buckets; returns0 for an input less than the first lower bound; thethresholds arraymust be sorted, smallest first, or unexpected results will be obtained | width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[]) | 2 |
Table 9.4 shows functions for generating random numbers.
Table 9.4. Random Functions
Function | Return Type | Description |
---|
random()
| dp | random value in the range 0.0 <= x < 1.0 |
setseed(dp )
| void | set seed for subsequentrandom() calls (value between -1.0 and 1.0, inclusive) |
The characteristics of the values returned byrandom()
depend on the system implementation. It is not suitable for cryptographic applications; seepgcrypto module for an alternative.
Finally,Table 9.5 shows the available trigonometric functions. All trigonometric functions take arguments and return values of typedouble precision
. Trigonometric functions arguments are expressed in radians. Inverse functions return values are expressed in radians. See unit transformation functionsradians()
anddegrees()
above.
Table 9.5. Trigonometric Functions
Function | Description |
---|
acos(x )
| inverse cosine |
asin(x )
| inverse sine |
atan(x )
| inverse tangent |
atan2(y ,x )
| inverse tangent ofy /x
|
cos(x )
| cosine |
cot(x )
| cotangent |
sin(x )
| sine |
tan(x )
| tangent |