Movatterモバイル変換


[0]ホーム

URL:



Facebook
Postgres Pro
Facebook
Downloads
pgbench
Prev UpPostgres Pro Client ApplicationsHome Next

pgbench

pgbench — run a benchmark test onPostgres Pro

Synopsis

pgbench-i [option...] [dbname]

pgbench [option...] [dbname]

Description

pgbench is a simple program for running benchmark tests onPostgres Pro. It runs the same sequence of SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the average transaction rate (transactions per second). By default,pgbench tests a scenario that is loosely based on TPC-B, involving fiveSELECT,UPDATE, andINSERT commands per transaction. However, it is easy to test other cases by writing your own transaction script files.

Typical output frompgbench looks like:

transaction type: <builtin: TPC-B (sort of)>scaling factor: 10query mode: simplenumber of clients: 10number of threads: 1number of transactions per client: 1000number of transactions actually processed: 10000/10000tps = 85.184871 (including connections establishing)tps = 85.296346 (excluding connections establishing)

The first six lines report some of the most important parameter settings. The next line reports the number of transactions completed and intended (the latter being just the product of number of clients and number of transactions per client); these will be equal unless the run failed before completion. (In-T mode, only the actual number of transactions is printed.) The last two lines report the number of transactions per second, figured with and without counting the time to start database sessions.

The default TPC-B-like transaction test requires specific tables to be set up beforehand.pgbench should be invoked with the-i (initialize) option to create and populate these tables. (When you are testing a custom script, you don't need this step, but will instead need to do whatever setup your test needs.) Initialization looks like:

pgbench -i [other-options]dbname

wheredbname is the name of the already-created database to test in. (You may also need-h,-p, and/or-U options to specify how to connect to the database server.)

Caution

pgbench -i creates four tablespgbench_accounts,pgbench_branches,pgbench_history, andpgbench_tellers, destroying any existing tables of these names. Be very careful to use another database if you have tables having these names!

At the defaultscale factor of 1, the tables initially contain this many rows:

table                   # of rows---------------------------------pgbench_branches        1pgbench_tellers         10pgbench_accounts        100000pgbench_history         0

You can (and, for most purposes, probably should) increase the number of rows by using the-s (scale factor) option. The-F (fillfactor) option might also be used at this point.

Once you have done the necessary setup, you can run your benchmark with a command that doesn't include-i, that is

pgbench [options]dbname

In nearly all cases, you'll need some options to make a useful test. The most important options are-c (number of clients),-t (number of transactions),-T (time limit), and-f (specify a custom script file). See below for a full list.

Options

The following is divided into three subsections: Different options are used during database initialization and while running benchmarks, some options are useful in both cases.

Initialization Options

pgbench accepts the following command-line initialization arguments:

-i
--initialize

Required to invoke initialization mode.

-Ffillfactor
--fillfactor=fillfactor

Create thepgbench_accounts,pgbench_tellers andpgbench_branches tables with the given fillfactor. Default is 100.

-n
--no-vacuum

Perform no vacuuming after initialization.

-q
--quiet

Switch logging to quiet mode, producing only one progress message per 5 seconds. The default logging prints one message each 100000 rows, which often outputs many lines per second (especially on good hardware).

-sscale_factor
--scale=scale_factor

Multiply the number of rows generated by the scale factor. For example,-s 100 will create 10,000,000 rows in thepgbench_accounts table. Default is 1. When the scale is 20,000 or larger, the columns used to hold account identifiers (aid columns) will switch to using larger integers (bigint), in order to be big enough to hold the range of account identifiers.

--foreign-keys

Create foreign key constraints between the standard tables.

--index-tablespace=index_tablespace

Create indexes in the specified tablespace, rather than the default tablespace.

--tablespace=tablespace

Create tables in the specified tablespace, rather than the default tablespace.

--unlogged-tables

Create all tables as unlogged tables, rather than permanent tables.

Benchmarking Options

pgbench accepts the following command-line benchmarking arguments:

-bscriptname[@weight]
--builtin=scriptname[@weight]

Add the specified built-in script to the list of scripts to be executed. Available built-in scripts are:tpcb-like,simple-update andselect-only. Unambiguous prefixes of built-in names are accepted. With the special namelist, show the list of built-in scripts and exit immediately.

Optionally, write an integer weight after@ to adjust the probability of selecting this script versus other ones. The default weight is 1. See below for details.

-cclients
--client=clients

Number of clients simulated, that is, number of concurrent database sessions. Default is 1.

-C
--connect

Establish a new connection for each transaction, rather than doing it just once per client session. This is useful to measure the connection overhead.

-d
--debug

Print debugging output.

-Dvarname=value
--define=varname=value

Define a variable for use by a custom script (see below). Multiple-D options are allowed.

-ffilename[@weight]
--file=filename[@weight]

Add a transaction script read fromfilename to the list of scripts to be executed.

Optionally, write an integer weight after@ to adjust the probability of selecting this script versus other ones. The default weight is 1. (To use a script file name that includes an@ character, append a weight so that there is no ambiguity, for examplefilen@me@1.) See below for details.

-jthreads
--jobs=threads

Number of worker threads withinpgbench. Using more than one thread can be helpful on multi-CPU machines. Clients are distributed as evenly as possible among available threads. Default is 1.

-l
--log

Write information about each transaction to a log file. See below for details.

-Llimit
--latency-limit=limit

Transactions that last more thanlimit milliseconds are counted and reported separately, aslate.

When throttling is used (--rate=...), transactions that lag behind schedule by more thanlimit ms, and thus have no hope of meeting the latency limit, are not sent to the server at all. They are counted and reported separately asskipped.

-Mquerymode
--protocol=querymode

Protocol to use for submitting queries to the server:

  • simple: use simple query protocol.

  • extended: use extended query protocol.

  • prepared: use extended query protocol with prepared statements.

The default is simple query protocol. (SeeChapter 50 for more information.)

-n
--no-vacuum

Perform no vacuuming before running the test. This option isnecessary if you are running a custom test scenario that does not include the standard tablespgbench_accounts,pgbench_branches,pgbench_history, andpgbench_tellers.

-N
--skip-some-updates

Run built-in simple-update script. Shorthand for-b simple-update.

-Psec
--progress=sec

Show progress report everysec seconds. The report includes the time since the beginning of the run, the tps since the last report, and the transaction latency average and standard deviation since the last report. Under throttling (-R), the latency is computed with respect to the transaction scheduled start time, not the actual transaction beginning time, thus it also includes the average schedule lag time.

-r
--report-latencies

Report the average per-statement latency (execution time from the perspective of the client) of each command after the benchmark finishes. See below for details.

-Rrate
--rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default). The rate is given in transactions per second. If the targeted rate is above the maximum possible rate, the rate limit won't impact the results.

The rate is targeted by starting transactions along a Poisson-distributed schedule time line. The expected start time schedule moves forward based on when the client first started, not when the previous transaction ended. That approach means that when transactions go past their original scheduled end time, it is possible for later ones to catch up again.

When throttling is active, the transaction latency reported at the end of the run is calculated from the scheduled start times, so it includes the time each transaction had to wait for the previous transaction to finish. The wait time is called the schedule lag time, and its average and maximum are also reported separately. The transaction latency with respect to the actual transaction start time, i.e., the time spent executing the transaction in the database, can be computed by subtracting the schedule lag time from the reported latency.

If--latency-limit is used together with--rate, a transaction can lag behind so much that it is already over the latency limit when the previous transaction ends, because the latency is calculated from the scheduled start time. Such transactions are not sent to the server, but are skipped altogether and counted separately.

A high schedule lag time is an indication that the system cannot process transactions at the specified rate, with the chosen number of clients and threads. When the average transaction execution time is longer than the scheduled interval between each transaction, each successive transaction will fall further behind, and the schedule lag time will keep increasing the longer the test run is. When that happens, you will have to reduce the specified transaction rate.

-sscale_factor
--scale=scale_factor

Report the specified scale factor inpgbench's output. With the built-in tests, this is not necessary; the correct scale factor will be detected by counting the number of rows in thepgbench_branches table. However, when testing only custom benchmarks (-f option), the scale factor will be reported as 1 unless this option is used.

-S
--select-only

Run built-in select-only script. Shorthand for-b select-only.

-ttransactions
--transactions=transactions

Number of transactions each client runs. Default is 10.

-Tseconds
--time=seconds

Run the test for this many seconds, rather than a fixed number of transactions per client.-t and-T are mutually exclusive.

-v
--vacuum-all

Vacuum all four standard tables before running the test. With neither-n nor-v,pgbench will vacuum thepgbench_tellers andpgbench_branches tables, and will truncatepgbench_history.

--aggregate-interval=seconds

Length of aggregation interval (in seconds). May be used only with-l option. With this option, the log contains per-interval summary data, as described below.

--log-prefix=prefix

Set the filename prefix for the log files created by--log. The default ispgbench_log.

--progress-timestamp

When showing progress (option-P), use a timestamp (Unix epoch) instead of the number of seconds since the beginning of the run. The unit is in seconds, with millisecond precision after the dot. This helps compare logs generated by various tools.

--sampling-rate=rate

Sampling rate, used when writing data into the log, to reduce the amount of log generated. If this option is given, only the specified fraction of transactions are logged. 1.0 means all transactions will be logged, 0.05 means only 5% of the transactions will be logged.

Remember to take the sampling rate into account when processing the log file. For example, when computing tps values, you need to multiply the numbers accordingly (e.g., with 0.01 sample rate, you'll only get 1/100 of the actual tps).

Common Options

pgbench accepts the following command-line common arguments:

-hhostname
--host=hostname

The database server's host name

-pport
--port=port

The database server's port number

-Ulogin
--username=login

The user name to connect as

-V
--version

Print thepgbench version and exit.

-?
--help

Show help aboutpgbench command line arguments, and exit.

Notes

What is theTransaction Actually Performed inpgbench?

pgbench executes test scripts chosen randomly from a specified list. The scripts may include built-in scripts specified with-b and user-provided scripts specified with-f. Each script may be given a relative weight specified after an@ so as to change its selection probability. The default weight is1. Scripts with a weight of0 are ignored.

The default built-in transaction script (also invoked with-b tpcb-like) issues seven commands per transaction over randomly chosenaid,tid,bid anddelta. The scenario is inspired by the TPC-B benchmark, but is not actually TPC-B, hence the name.

  1. BEGIN;

  2. UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;

  3. SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

  4. UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

  5. UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

  6. INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

  7. END;

If you select thesimple-update built-in (also-N), steps 4 and 5 aren't included in the transaction. This will avoid update contention on these tables, but it makes the test case even less like TPC-B.

If you select theselect-only built-in (also-S), only theSELECT is issued.

Custom Scripts

pgbench has support for running custom benchmark scenarios by replacing the default transaction script (described above) with a transaction script read from a file (-f option). In this case atransaction counts as one execution of a script file.

A script file contains one or more SQL commands terminated by semicolons. Empty lines and lines beginning with-- are ignored. Script files can also containmeta commands, which are interpreted bypgbench itself, as described below.

Note

BeforePostgres Pro 9.6, SQL commands in script files were terminated by newlines, and so they could not be continued across lines. Now a semicolon isrequired to separate consecutive SQL commands (though a SQL command does not need one if it is followed by a meta command). If you need to create a script file that works with both old and new versions ofpgbench, be sure to write each SQL command on a single line ending with a semicolon.

There is a simple variable-substitution facility for script files. Variables can be set by the command-line-D option, explained above, or by the meta commands explained below. In addition to any variables preset by-D command-line options, there are a few variables that are preset automatically, listed inTable 244. A value specified for these variables using-D takes precedence over the automatic presets. Once set, a variable's value can be inserted into a SQL command by writing:variablename. When running more than one client session, each session has its own set of variables.

Table 244. Automatic Variables

VariableDescription
scalecurrent scale factor
client_idunique number identifying the client session (starts from zero)

Script file meta commands begin with a backslash (\) and normally extend to the end of the line, although they can be continued to additional lines by writing backslash-return. Arguments to a meta command are separated by white space. These meta commands are supported:

\setvarnameexpression

Sets variablevarname to a value calculated fromexpression. The expression may contain integer constants such as5432, double constants such as3.14159, references to variables:variablename, unary operators (+,-) and binary operators (+,-,*,/,%) with their usual precedence and associativity,function calls, and parentheses.

Examples:

\set ntellers 10 * :scale\set aid (1021 * random(1, 100000 * :scale)) % \           (100000 * :scale) + 1
\sleepnumber [ us | ms | s ]

Causes script execution to sleep for the specified duration in microseconds (us), milliseconds (ms) or seconds (s). If the unit is omitted then seconds are the default.number can be either an integer constant or a:variablename reference to a variable having an integer value.

Example:

\sleep 10 ms
\setshellvarnamecommand [argument ... ]

Sets variablevarname to the result of the shell commandcommand with the givenargument(s). The command must return an integer value through its standard output.

command and eachargument can be either a text constant or a:variablename reference to a variable. If you want to use anargument starting with a colon, write an additional colon at the beginning ofargument.

Example:

\setshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon
\shellcommand [argument ... ]

Same as\setshell, but the result of the command is discarded.

Example:

\shell command literal_argument :variable ::literal_starting_with_colon

Built-In Functions

The functions listed inTable 245 are built intopgbench and may be used in expressions appearing in\set.

Table 245. pgbench Functions

FunctionReturn TypeDescriptionExampleResult
abs(a)same asaabsolute valueabs(-17)17
debug(a)same asaprinta tostderr, and returnadebug(5432.1)5432.1
double(i)doublecast to doubledouble(5432)5432.0
greatest(a [,... ] )double if anya is double, else integerlargest value among argumentsgreatest(5, 4, 3, 2)5
int(x)integercast to intint(5.4 + 3.8)9
least(a [,... ] )double if anya is double, else integersmallest value among argumentsleast(5, 4, 3, 2.1)2.1
pi()doublevalue of the constant PIpi()3.14159265358979323846
random(lb,ub)integeruniformly-distributed random integer in[lb, ub]random(1, 10)an integer between1 and10
random_exponential(lb,ub,parameter)integerexponentially-distributed random integer in[lb, ub], see belowrandom_exponential(1, 10, 3.0)an integer between1 and10
random_gaussian(lb,ub,parameter)integerGaussian-distributed random integer in[lb, ub], see belowrandom_gaussian(1, 10, 2.5)an integer between1 and10
sqrt(x)doublesquare rootsqrt(2.0)1.414213562

Therandom function generates values using a uniform distribution, that is all the values are drawn within the specified range with equal probability. Therandom_exponential andrandom_gaussian functions require an additional double parameter which determines the precise shape of the distribution.

  • For an exponential distribution,parameter controls the distribution by truncating a quickly-decreasing exponential distribution atparameter, and then projecting onto integers between the bounds. To be precise, with


    f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))

    Then valuei betweenmin andmax inclusive is drawn with probability:f(i) - f(i + 1).

    Intuitively, the larger theparameter, the more frequently values close tomin are accessed, and the less frequently values close tomax are accessed. The closer to 0parameter is, the flatter (more uniform) the access distribution. A crude approximation of the distribution is that the most frequent 1% values in the range, close tomin, are drawnparameter% of the time. Theparameter value must be strictly positive.

  • For a Gaussian distribution, the interval is mapped onto a standard normal distribution (the classical bell-shaped Gaussian curve) truncated at-parameter on the left and+parameter on the right. Values in the middle of the interval are more likely to be drawn. To be precise, ifPHI(x) is the cumulative distribution function of the standard normal distribution, with meanmu defined as(max + min) / 2.0, with


    f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
           (2.0 * PHI(parameter) - 1)

    then valuei betweenmin andmax inclusive is drawn with probability:f(i + 0.5) - f(i - 0.5). Intuitively, the larger theparameter, the more frequently values close to the middle of the interval are drawn, and the less frequently values close to themin andmax bounds. About 67% of values are drawn from the middle1.0 / parameter, that is a relative0.5 / parameter around the mean, and 95% in the middle2.0 / parameter, that is a relative1.0 / parameter around the mean; for instance, ifparameter is 4.0, 67% of values are drawn from the middle quarter (1.0 / 4.0) of the interval (i.e., from3.0 / 8.0 to5.0 / 8.0) and 95% from the middle half (2.0 / 4.0) of the interval (second and third quartiles). The minimumparameter is 2.0 for performance of the Box-Muller transform.

As an example, the full definition of the built-in TPC-B-like transaction is:

\set aid random(1, 100000 * :scale)\set bid random(1, 1 * :scale)\set tid random(1, 10 * :scale)\set delta random(-5000, 5000)BEGIN;UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;SELECT abalance FROM pgbench_accounts WHERE aid = :aid;UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);END;

This script allows each iteration of the transaction to reference different, randomly-chosen rows. (This example also shows why it's important for each client session to have its own variables — otherwise they'd not be independently touching different rows.)

Per-Transaction Logging

With the-l option (but without the--aggregate-interval option),pgbench writes information about each transaction to a log file. The log file will be namedprefix.nnn, whereprefix defaults topgbench_log, andnnn is the PID of thepgbench process. The prefix can be changed by using the--log-prefix option. If the-j option is 2 or higher, so that there are multiple worker threads, each will have its own log file. The first worker will use the same name for its log file as in the standard single worker case. The additional log files for the other workers will be namedprefix.nnn.mmm, wheremmm is a sequential number for each worker starting with 1.

The format of the log is:

client_idtransaction_notimescript_notime_epochtime_us [schedule_lag]

whereclient_id indicates which client session ran the transaction,transaction_no counts how many transactions have been run by that session,time is the total elapsed transaction time in microseconds,script_no identifies which script file was used (useful when multiple scripts were specified with-f or-b), andtime_epoch/time_us are a Unix-epoch time stamp and an offset in microseconds (suitable for creating an ISO 8601 time stamp with fractional seconds) showing when the transaction completed. Theschedule_lag field is the difference between the transaction's scheduled start time, and the time it actually started, in microseconds. It is only present when the--rate option is used. When both--rate and--latency-limit are used, thetime for a skipped transaction will be reported asskipped.

Here is a snippet of a log file generated in a single-client run:

0 199 2241 0 1175850568 9955980 200 2465 0 1175850568 9980790 201 2513 0 1175850569 6080 202 2038 0 1175850569 2663

Another example with--rate=100 and--latency-limit=5 (note the additionalschedule_lag column):

0 81 4621 0 1412881037 912698 30050 82 6173 0 1412881037 914578 43040 83 skipped 0 1412881037 914578 52170 83 skipped 0 1412881037 914578 50990 83 4722 0 1412881037 916203 31080 84 4142 0 1412881037 918023 23330 85 2465 0 1412881037 919759 740

In this example, transaction 82 was late, because its latency (6.173 ms) was over the 5 ms limit. The next two transactions were skipped, because they were already late before they were even started.

When running a long test on hardware that can handle a lot of transactions, the log files can become very large. The--sampling-rate option can be used to log only a random sample of transactions.

Aggregated Logging

With the--aggregate-interval option, a different format is used for the log files:

interval_startnum_transactionssum_latencysum_latency_2min_latencymax_latency [sum_lagsum_lag_2min_lagmax_lag [skipped]]

whereinterval_start is the start of the interval (as a Unix epoch time stamp),num_transactions is the number of transactions within the interval,sum_latency is the sum of the transaction latencies within the interval,sum_latency_2 is the sum of squares of the transaction latencies within the interval,min_latency is the minimum latency within the interval, andmax_latency is the maximum latency within the interval. The next fields,sum_lag,sum_lag_2,min_lag, andmax_lag, are only present if the--rate option is used. They provide statistics about the time each transaction had to wait for the previous one to finish, i.e., the difference between each transaction's scheduled start time and the time it actually started. The very last field,skipped, is only present if the--latency-limit option is used, too. It counts the number of transactions skipped because they would have started too late. Each transaction is counted in the interval when it was committed.

Here is some example output:

1345828501 5601 1542744 483552416 61 25731345828503 7884 1979812 565806736 60 14791345828505 7208 1979422 567277552 59 13911345828507 7685 1980268 569784714 60 13981345828509 7073 1979779 573489941 236 1411

Notice that while the plain (unaggregated) log file shows which script was used for each transaction, the aggregated log does not. Therefore if you need per-script data, you need to aggregate the data on your own.

Per-Statement Latencies

With the-r option,pgbench collects the elapsed transaction time of each statement executed by every client. It then reports an average of those values, referred to as the latency for each statement, after the benchmark has finished.

For the default script, the output will look similar to this:

starting vacuum...end.transaction type: <builtin: TPC-B (sort of)>scaling factor: 1query mode: simplenumber of clients: 10number of threads: 1number of transactions per client: 1000number of transactions actually processed: 10000/10000latency average = 15.844 mslatency stddev = 2.715 mstps = 618.764555 (including connections establishing)tps = 622.977698 (excluding connections establishing)script statistics: - statement latencies in milliseconds:        0.002  \set aid random(1, 100000 * :scale)        0.005  \set bid random(1, 1 * :scale)        0.002  \set tid random(1, 10 * :scale)        0.001  \set delta random(-5000, 5000)        0.326  BEGIN;        0.603  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;        0.454  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;        5.528  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;        7.335  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;        0.371  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);        1.212  END;

If multiple script files are specified, the averages are reported separately for each script file.

Note that collecting the additional timing information needed for per-statement latency computation adds some overhead. This will slow average execution speed and lower the computed TPS. The amount of slowdown varies significantly depending on platform and hardware. Comparing average TPS values with and without latency reporting enabled is a good way to measure if the timing overhead is significant.

Good Practices

It is very easy to usepgbench to produce completely meaningless numbers. Here are some guidelines to help you get useful results.

In the first place,never believe any test that runs for only a few seconds. Use the-t or-T option to make the run last at least a few minutes, so as to average out noise. In some cases you could need hours to get numbers that are reproducible. It's a good idea to try the test run a few times, to find out if your numbers are reproducible or not.

For the default TPC-B-like test scenario, the initialization scale factor (-s) should be at least as large as the largest number of clients you intend to test (-c); else you'll mostly be measuring update contention. There are only-s rows in thepgbench_branches table, and every transaction wants to update one of them, so-c values in excess of-s will undoubtedly result in lots of transactions blocked waiting for other transactions.

The default test scenario is also quite sensitive to how long it's been since the tables were initialized: accumulation of dead rows and dead space in the tables changes the results. To understand the results you must keep track of the total number of updates and when vacuuming happens. If autovacuum is enabled it can result in unpredictable changes in measured performance.

A limitation ofpgbench is that it can itself become the bottleneck when trying to test a large number of client sessions. This can be alleviated by runningpgbench on a different machine from the database server, although low network latency will be essential. It might even be useful to run severalpgbench instances concurrently, on several client machines, against the same database server.

Security

If untrusted users have access to a database that has not adopted asecure schema usage pattern, do not runpgbench in that database.pgbench uses unqualified names and does not manipulate the search path.


Prev Up Next
pg_basebackup Home pg_config
epubpdf
Go to Postgres Pro Standard 10
By continuing to browse this website, you agree to the use of cookies. Go toPrivacy Policy.

[8]ページ先頭

©2009-2025 Movatter.jp