
Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins.
J P Whitelegge
C B Gundersen
K F Faull
Abstract
Membrane proteins drive and mediate many essential cellular processes making them a vital section of the proteome. However, the amphipathic nature of these molecules ensures their detailed structural analysis remains challenging. A versatile procedure for effective electrospray-ionization mass spectrometry (ESI-MS) of intact intrinsic membrane proteins purified using reverse-phase chromatography in aqueous formic acid/isopropanol is presented. The spectra of four examples, bacteriorhodopsin and its apoprotein from Halobacterium and the D1 and D2 reaction-center subunits from spinach thylakoids, achieve mass measurements that are within 0.01% of calculated theoretical values. All of the spectra reveal lesser quantities of other molecular species that can usually be equated with covalently modified subpopulations of these proteins. Our analysis of bovine rhodopsin, the first ESI-MS study of a G-protein coupled receptor, yielded a complex spectrum indicative of extensive molecular heterogeneity. The range of masses measured for the native molecule agrees well with the range calculated based upon variable glycosylation and reveals further heterogeneity arising from other covalent modifications. The technique described represents the most precise way to catalogue membrane proteins and their post-translational modifications. Resolution of the components of protein complexes provides insights into native protein/protein interactions. The apparent retention of structure by bacteriorhodopsin during the analysis raises the potential of obtaining tertiary structure information using more developed ESI-MS experiments.
Full Text
The Full Text of this article is available as aPDF (772.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Barnidge D. R., Dratz E. A., Sunner J., Jesaitis A. J. Identification of transmembrane tryptic peptides of rhodopsin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci. 1997 Apr;6(4):816–824. doi: 10.1002/pro.5560060408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouchon B., Van Dorsselaer A., Roitsch C. Characterization of multiple acylation sites on a recombinant protein by electrospray mass spectrometry. Biol Mass Spectrom. 1993 Jun;22(6):358–360. doi: 10.1002/bms.1200220608. [DOI] [PubMed] [Google Scholar]
- Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
- Burlingame A. L., Boyd R. K., Gaskell S. J. Mass spectrometry. Anal Chem. 1996 Jun 15;68(12):599R–651R. doi: 10.1021/a1960021u. [DOI] [PubMed] [Google Scholar]
- Callahan F. E., Ghirardi M. L., Sopory S. K., Mehta A. M., Edelman M., Mattoo A. K. A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem. 1990 Sep 15;265(26):15357–15360. [PubMed] [Google Scholar]
- Chait B. T., Kent S. B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science. 1992 Sep 25;257(5078):1885–1894. doi: 10.1126/science.1411504. [DOI] [PubMed] [Google Scholar]
- FROMM H. J. Evidence for ternary-complex formation with rabbit-muscle lactic acid dehydrogenase, diphosphopyridine nucleotide and pyruvic acid. Biochim Biophys Acta. 1961 Sep 2;52:199–200. doi: 10.1016/0006-3002(61)90919-2. [DOI] [PubMed] [Google Scholar]
- Fearnley I. M., Walker J. E. Analysis of hydrophobic proteins and peptides by electrospray ionization MS. Biochem Soc Trans. 1996 Aug;24(3):912–917. doi: 10.1042/bst0240912. [DOI] [PubMed] [Google Scholar]
- Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
- Fujita S., Endo T., Ju J., Kean E. L., Kobata A. Structural studies of the N-linked sugar chains of human rhodopsin. Glycobiology. 1994 Oct;4(5):633–640. doi: 10.1093/glycob/4.5.633. [DOI] [PubMed] [Google Scholar]
- Fukuda M. N., Papermaster D. S., Hargrave P. A. Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J Biol Chem. 1979 Sep 10;254(17):8201–8207. [PubMed] [Google Scholar]
- Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
- Green B. N. A comparison of mass spectrometric methods for the analysis of protein mixtures. Biochem J. 1992 Jun 1;284(Pt 2):603–604. doi: 10.1042/bj2840603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green B. N., Oliver R. W. The study of intact proteins and glycoproteins by electrospray m.s. Biochem Soc Trans. 1991 Nov;19(4):929–935. doi: 10.1042/bst0190929. [DOI] [PubMed] [Google Scholar]
- Heukeshoven J., Dernick R. Reversed-phase high-performance liquid chromatography of virus proteins and other large hydrophobic proteins in formic acid containing solvents. J Chromatogr. 1982 Dec 3;252:241–254. doi: 10.1016/s0021-9673(01)88415-6. [DOI] [PubMed] [Google Scholar]
- Holschuh K., Bottomley W., Whitfeld P. R. Structure of the spinach chloroplast genes for the D2 and 44 kd reaction-centre proteins of photosystem II and for tRNASer (UGA). Nucleic Acids Res. 1984 Dec 11;12(23):8819–8834. doi: 10.1093/nar/12.23.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang K. S., Radhakrishnan R., Bayley H., Khorana H. G. Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal. J Biol Chem. 1982 Nov 25;257(22):13616–13623. [PubMed] [Google Scholar]
- Hufnagel P., Schweiger U., Eckerskorn C., Oesterhelt D. Electrospray ionization mass spectrometry of genetically and chemically modified bacteriorhodopsins. Anal Biochem. 1996 Dec 1;243(1):46–54. doi: 10.1006/abio.1996.0480. [DOI] [PubMed] [Google Scholar]
- Ikeuchi M., Inoue Y. A new photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome. FEBS Lett. 1988 Dec 5;241(1-2):99–104. doi: 10.1016/0014-5793(88)81039-1. [DOI] [PubMed] [Google Scholar]
- Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
- Khorana H. G. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1166–1171. doi: 10.1073/pnas.90.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S. The new genomics: global views of biology. Science. 1996 Oct 25;274(5287):536–539. doi: 10.1126/science.274.5287.536. [DOI] [PubMed] [Google Scholar]
- Liang C. J., Yamashita K., Muellenberg C. G., Shichi H., Kobata A. Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem. 1979 Jul 25;254(14):6414–6418. [PubMed] [Google Scholar]
- Michel H., Hunt D. F., Shabanowitz J., Bennett J. Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. J Biol Chem. 1988 Jan 25;263(3):1123–1130. [PubMed] [Google Scholar]
- Oesterhelt D., Meentzen M., Schuhmann L. Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chromophores. Eur J Biochem. 1973 Dec 17;40(2):453–463. doi: 10.1111/j.1432-1033.1973.tb03214.x. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
- Oishi K. K., Shapiro D. R., Tewari K. K. Sequence organization of a pea chloroplast DNA gene coding for a 34,500-dalton protein. Mol Cell Biol. 1984 Nov;4(11):2556–2563. doi: 10.1128/mcb.4.11.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papermaster D. S., Dreyer W. J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry. 1974 May 21;13(11):2438–2444. doi: 10.1021/bi00708a031. [DOI] [PubMed] [Google Scholar]
- Robinson C. V., Gross M., Eyles S. J., Ewbank J. J., Mayhew M., Hartl F. U., Dobson C. M., Radford S. E. Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature. 1994 Dec 15;372(6507):646–651. doi: 10.1038/372646a0. [DOI] [PubMed] [Google Scholar]
- Schey K. L., Papac D. I., Knapp D. R., Crouch R. K. Matrix-assisted laser desorption mass spectrometry of rhodopsin and bacteriorhodopsin. Biophys J. 1992 Nov;63(5):1240–1243. doi: 10.1016/S0006-3495(92)81699-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schindler P. A., Van Dorsselaer A., Falick A. M. Analysis of hydrophobic proteins and peptides by electrospray ionization mass spectrometry. Anal Biochem. 1993 Sep;213(2):256–263. doi: 10.1006/abio.1993.1418. [DOI] [PubMed] [Google Scholar]
- Seielstad D. A., Carlson K. E., Kushner P. J., Greene G. L., Katzenellenbogen J. A. Analysis of the structural core of the human estrogen receptor ligand binding domain by selective proteolysis/mass spectrometric analysis. Biochemistry. 1995 Oct 3;34(39):12605–12615. doi: 10.1021/bi00039a016. [DOI] [PubMed] [Google Scholar]
- Sharma J., Panico M., Barber J., Morris H. R. Characterization of the low molecular weight photosystem II reaction center subunits and their light-induced modifications by mass spectrometry. J Biol Chem. 1997 Feb 14;272(7):3935–3943. doi: 10.1074/jbc.272.7.3935. [DOI] [PubMed] [Google Scholar]
- Sharma J., Panico M., Barber J., Morris H. R. Purification and determination of intact molecular mass by electrospray ionization mass spectrometry of the photosystem II reaction center subunits. J Biol Chem. 1997 Dec 26;272(52):33153–33157. doi: 10.1074/jbc.272.52.33153. [DOI] [PubMed] [Google Scholar]
- Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitelegge J. P., Jewess P., Pickering M. G., Gerrish C., Camilleri P., Bowyer J. R. Sequence analysis of photoaffinity-labelled peptides derived by proteolysis of photosystem-2 reaction centres from thylakoid membranes treated with [14C]azidoatrazine. Eur J Biochem. 1992 Aug 1;207(3):1077–1084. doi: 10.1111/j.1432-1033.1992.tb17144.x. [DOI] [PubMed] [Google Scholar]
- Widger W. R., Cramer W. A., Hermodson M., Meyer D., Gullifor M. Purification and partial amino acid sequence of the chloroplast cytochrome b-559. J Biol Chem. 1984 Mar 25;259(6):3870–3876. [PubMed] [Google Scholar]
- Zurawski G., Bohnert H. J., Whitfeld P. R., Bottomley W. Nucleotide sequence of the gene for the M(r) 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of M(r) 38,950. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7699–7703. doi: 10.1073/pnas.79.24.7699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- le Maire M., Deschamps S., Møller J. V., Le Caer J. P., Rossier J. Electrospray ionization mass spectrometry on hydrophobic peptides electroeluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis application to the topology of the sarcoplasmic reticulum Ca2+ ATPase. Anal Biochem. 1993 Oct;214(1):50–57. doi: 10.1006/abio.1993.1455. [DOI] [PubMed] [Google Scholar]