Movatterモバイル変換


[0]ホーム

URL:


absolute value


LetR be anordered ring and letaR. Theabsolute valueMathworldPlanetmathPlanetmathPlanetmath ofa is defined to be thefunction||:RR given by

|a|:={a if a0,-a otherwise.

In particular, the usual absolute value|| on the field ofreal numbers is defined in this manner. AnequivalentPlanetmathPlanetmath definition over the real numbers is|a|:=max{a,-a}.

Absolute value has a different meaning in the case ofcomplex numbersMathworldPlanetmathPlanetmath: for a complex numberz, the absolute value|z| ofz is defined to bex2+y2, wherez=x+yi andx,y are real.

All absolute value functions satisfy the defining properties of avaluation, including:

  • |a|0 for allaR, with equality if and only ifa=0

  • |ab|=|a||b| for alla,bR

  • |a+b||a|+|b| for alla,bR (triangle inequalityPlanetmathPlanetmath)

However, in general they are not literally valuations, because valuations are required to be real valued. In the case of and, the absolute value is a valuation, and it induces a metric in the usual way, with distance function defined byd(x,y):=|x-y|.

Titleabsolute value
Canonical nameAbsoluteValue
Date of creation2013-03-22 11:52:09
Last modified on2013-03-22 11:52:09
Ownerdjao (24)
Last modified bydjao (24)
Numerical id10
Authordjao (24)
Entry typeDefinition
Classificationmsc 13-00
Classificationmsc 11A15

[8]ページ先頭

©2009-2026 Movatter.jp