bits
packagestandard libraryThis package is not in the latest version of its module.
Details
Validgo.mod file
The Go module system was introduced in Go 1.11 and is the official dependency management solution for Go.
Redistributable license
Redistributable licenses place minimal restrictions on how software can be used, modified, and redistributed.
Tagged version
Modules with tagged versions give importers more predictable builds.
Stable version
When a project reaches major version v1 it is considered stable.
- Learn more about best practices
Repository
Links
Documentation¶
Overview¶
Package bits implements bit counting and manipulationfunctions for the predeclared unsigned integer types.
Functions in this package may be implemented directly bythe compiler, for better performance. For those functionsthe code in this package will not be used. Whichfunctions are implemented by the compiler depends on thearchitecture and the Go release.
Index¶
- Constants
- func Add(x, y, carry uint) (sum, carryOut uint)
- func Add32(x, y, carry uint32) (sum, carryOut uint32)
- func Add64(x, y, carry uint64) (sum, carryOut uint64)
- func Div(hi, lo, y uint) (quo, rem uint)
- func Div32(hi, lo, y uint32) (quo, rem uint32)
- func Div64(hi, lo, y uint64) (quo, rem uint64)
- func LeadingZeros(x uint) int
- func LeadingZeros16(x uint16) int
- func LeadingZeros32(x uint32) int
- func LeadingZeros64(x uint64) int
- func LeadingZeros8(x uint8) int
- func Len(x uint) int
- func Len16(x uint16) (n int)
- func Len32(x uint32) (n int)
- func Len64(x uint64) (n int)
- func Len8(x uint8) int
- func Mul(x, y uint) (hi, lo uint)
- func Mul32(x, y uint32) (hi, lo uint32)
- func Mul64(x, y uint64) (hi, lo uint64)
- func OnesCount(x uint) int
- func OnesCount16(x uint16) int
- func OnesCount32(x uint32) int
- func OnesCount64(x uint64) int
- func OnesCount8(x uint8) int
- func Rem(hi, lo, y uint) uint
- func Rem32(hi, lo, y uint32) uint32
- func Rem64(hi, lo, y uint64) uint64
- func Reverse(x uint) uint
- func Reverse16(x uint16) uint16
- func Reverse32(x uint32) uint32
- func Reverse64(x uint64) uint64
- func Reverse8(x uint8) uint8
- func ReverseBytes(x uint) uint
- func ReverseBytes16(x uint16) uint16
- func ReverseBytes32(x uint32) uint32
- func ReverseBytes64(x uint64) uint64
- func RotateLeft(x uint, k int) uint
- func RotateLeft16(x uint16, k int) uint16
- func RotateLeft32(x uint32, k int) uint32
- func RotateLeft64(x uint64, k int) uint64
- func RotateLeft8(x uint8, k int) uint8
- func Sub(x, y, borrow uint) (diff, borrowOut uint)
- func Sub32(x, y, borrow uint32) (diff, borrowOut uint32)
- func Sub64(x, y, borrow uint64) (diff, borrowOut uint64)
- func TrailingZeros(x uint) int
- func TrailingZeros16(x uint16) int
- func TrailingZeros32(x uint32) int
- func TrailingZeros64(x uint64) int
- func TrailingZeros8(x uint8) int
Examples¶
- Add32
- Add64
- Div32
- Div64
- LeadingZeros16
- LeadingZeros32
- LeadingZeros64
- LeadingZeros8
- Len16
- Len32
- Len64
- Len8
- Mul32
- Mul64
- OnesCount
- OnesCount16
- OnesCount32
- OnesCount64
- OnesCount8
- Reverse16
- Reverse32
- Reverse64
- Reverse8
- ReverseBytes16
- ReverseBytes32
- ReverseBytes64
- RotateLeft16
- RotateLeft32
- RotateLeft64
- RotateLeft8
- Sub32
- Sub64
- TrailingZeros16
- TrailingZeros32
- TrailingZeros64
- TrailingZeros8
Constants¶
const UintSize = uintSize
UintSize is the size of a uint in bits.
Variables¶
This section is empty.
Functions¶
funcAdd¶added ingo1.12
Add returns the sum with carry of x, y and carry: sum = x + y + carry.The carry input must be 0 or 1; otherwise the behavior is undefined.The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
funcAdd32¶added ingo1.12
Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.The carry input must be 0 or 1; otherwise the behavior is undefined.The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 33<<32 + 12n1 := []uint32{33, 12}// Second number is 21<<32 + 23n2 := []uint32{21, 23}// Add them together without producing carry.d1, carry := bits.Add32(n1[1], n2[1], 0)d0, _ := bits.Add32(n1[0], n2[0], carry)nsum := []uint32{d0, d1}fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)// First number is 1<<32 + 2147483648n1 = []uint32{1, 0x80000000}// Second number is 1<<32 + 2147483648n2 = []uint32{1, 0x80000000}// Add them together producing carry.d1, carry = bits.Add32(n1[1], n2[1], 0)d0, _ = bits.Add32(n1[0], n2[0], carry)nsum = []uint32{d0, d1}fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)}
Output:[33 12] + [21 23] = [54 35] (carry bit was 0)[1 2147483648] + [1 2147483648] = [3 0] (carry bit was 1)
funcAdd64¶added ingo1.12
Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.The carry input must be 0 or 1; otherwise the behavior is undefined.The carryOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 33<<64 + 12n1 := []uint64{33, 12}// Second number is 21<<64 + 23n2 := []uint64{21, 23}// Add them together without producing carry.d1, carry := bits.Add64(n1[1], n2[1], 0)d0, _ := bits.Add64(n1[0], n2[0], carry)nsum := []uint64{d0, d1}fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)// First number is 1<<64 + 9223372036854775808n1 = []uint64{1, 0x8000000000000000}// Second number is 1<<64 + 9223372036854775808n2 = []uint64{1, 0x8000000000000000}// Add them together producing carry.d1, carry = bits.Add64(n1[1], n2[1], 0)d0, _ = bits.Add64(n1[0], n2[0], carry)nsum = []uint64{d0, d1}fmt.Printf("%v + %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)}
Output:[33 12] + [21 23] = [54 35] (carry bit was 0)[1 9223372036854775808] + [1 9223372036854775808] = [3 0] (carry bit was 1)
funcDiv¶added ingo1.12
Div returns the quotient and remainder of (hi, lo) divided by y:quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upperhalf in parameter hi and the lower half in parameter lo.Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
funcDiv32¶added ingo1.12
Div32 returns the quotient and remainder of (hi, lo) divided by y:quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upperhalf in parameter hi and the lower half in parameter lo.Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 0<<32 + 6n1 := []uint32{0, 6}// Second number is 0<<32 + 3n2 := []uint32{0, 3}// Divide them together.quo, rem := bits.Div32(n1[0], n1[1], n2[1])nsum := []uint32{quo, rem}fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)// First number is 2<<32 + 2147483648n1 = []uint32{2, 0x80000000}// Second number is 0<<32 + 2147483648n2 = []uint32{0, 0x80000000}// Divide them together.quo, rem = bits.Div32(n1[0], n1[1], n2[1])nsum = []uint32{quo, rem}fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)}
Output:[0 6] / 3 = [2 0][2 2147483648] / 2147483648 = [5 0]
funcDiv64¶added ingo1.12
Div64 returns the quotient and remainder of (hi, lo) divided by y:quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upperhalf in parameter hi and the lower half in parameter lo.Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 0<<64 + 6n1 := []uint64{0, 6}// Second number is 0<<64 + 3n2 := []uint64{0, 3}// Divide them together.quo, rem := bits.Div64(n1[0], n1[1], n2[1])nsum := []uint64{quo, rem}fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)// First number is 2<<64 + 9223372036854775808n1 = []uint64{2, 0x8000000000000000}// Second number is 0<<64 + 9223372036854775808n2 = []uint64{0, 0x8000000000000000}// Divide them together.quo, rem = bits.Div64(n1[0], n1[1], n2[1])nsum = []uint64{quo, rem}fmt.Printf("[%v %v] / %v = %v\n", n1[0], n1[1], n2[1], nsum)}
Output:[0 6] / 3 = [2 0][2 9223372036854775808] / 9223372036854775808 = [5 0]
funcLeadingZeros¶
LeadingZeros returns the number of leading zero bits in x; the result isUintSize for x == 0.
funcLeadingZeros16¶
LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("LeadingZeros16(%016b) = %d\n", 1, bits.LeadingZeros16(1))}
Output:LeadingZeros16(0000000000000001) = 15
funcLeadingZeros32¶
LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("LeadingZeros32(%032b) = %d\n", 1, bits.LeadingZeros32(1))}
Output:LeadingZeros32(00000000000000000000000000000001) = 31
funcLeadingZeros64¶
LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("LeadingZeros64(%064b) = %d\n", 1, bits.LeadingZeros64(1))}
Output:LeadingZeros64(0000000000000000000000000000000000000000000000000000000000000001) = 63
funcLeadingZeros8¶
LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("LeadingZeros8(%08b) = %d\n", 1, bits.LeadingZeros8(1))}
Output:LeadingZeros8(00000001) = 7
funcLen16¶
Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("Len16(%016b) = %d\n", 8, bits.Len16(8))}
Output:Len16(0000000000001000) = 4
funcLen32¶
Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("Len32(%032b) = %d\n", 8, bits.Len32(8))}
Output:Len32(00000000000000000000000000001000) = 4
funcLen64¶
Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("Len64(%064b) = %d\n", 8, bits.Len64(8))}
Output:Len64(0000000000000000000000000000000000000000000000000000000000001000) = 4
funcLen8¶
Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("Len8(%08b) = %d\n", 8, bits.Len8(8))}
Output:Len8(00001000) = 4
funcMul¶added ingo1.12
Mul returns the full-width product of x and y: (hi, lo) = x * ywith the product bits' upper half returned in hi and the lowerhalf returned in lo.
This function's execution time does not depend on the inputs.
funcMul32¶added ingo1.12
Mul32 returns the 64-bit product of x and y: (hi, lo) = x * ywith the product bits' upper half returned in hi and the lowerhalf returned in lo.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 0<<32 + 12n1 := []uint32{0, 12}// Second number is 0<<32 + 12n2 := []uint32{0, 12}// Multiply them together without producing overflow.hi, lo := bits.Mul32(n1[1], n2[1])nsum := []uint32{hi, lo}fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)// First number is 0<<32 + 2147483648n1 = []uint32{0, 0x80000000}// Second number is 0<<32 + 2n2 = []uint32{0, 2}// Multiply them together producing overflow.hi, lo = bits.Mul32(n1[1], n2[1])nsum = []uint32{hi, lo}fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)}
Output:12 * 12 = [0 144]2147483648 * 2 = [1 0]
funcMul64¶added ingo1.12
Mul64 returns the 128-bit product of x and y: (hi, lo) = x * ywith the product bits' upper half returned in hi and the lowerhalf returned in lo.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 0<<64 + 12n1 := []uint64{0, 12}// Second number is 0<<64 + 12n2 := []uint64{0, 12}// Multiply them together without producing overflow.hi, lo := bits.Mul64(n1[1], n2[1])nsum := []uint64{hi, lo}fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)// First number is 0<<64 + 9223372036854775808n1 = []uint64{0, 0x8000000000000000}// Second number is 0<<64 + 2n2 = []uint64{0, 2}// Multiply them together producing overflow.hi, lo = bits.Mul64(n1[1], n2[1])nsum = []uint64{hi, lo}fmt.Printf("%v * %v = %v\n", n1[1], n2[1], nsum)}
Output:12 * 12 = [0 144]9223372036854775808 * 2 = [1 0]
funcOnesCount¶
OnesCount returns the number of one bits ("population count") in x.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("OnesCount(%b) = %d\n", 14, bits.OnesCount(14))}
Output:OnesCount(1110) = 3
funcOnesCount16¶
OnesCount16 returns the number of one bits ("population count") in x.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("OnesCount16(%016b) = %d\n", 14, bits.OnesCount16(14))}
Output:OnesCount16(0000000000001110) = 3
funcOnesCount32¶
OnesCount32 returns the number of one bits ("population count") in x.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("OnesCount32(%032b) = %d\n", 14, bits.OnesCount32(14))}
Output:OnesCount32(00000000000000000000000000001110) = 3
funcOnesCount64¶
OnesCount64 returns the number of one bits ("population count") in x.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("OnesCount64(%064b) = %d\n", 14, bits.OnesCount64(14))}
Output:OnesCount64(0000000000000000000000000000000000000000000000000000000000001110) = 3
funcOnesCount8¶
OnesCount8 returns the number of one bits ("population count") in x.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("OnesCount8(%08b) = %d\n", 14, bits.OnesCount8(14))}
Output:OnesCount8(00001110) = 3
funcRem¶added ingo1.14
Rem returns the remainder of (hi, lo) divided by y. Rem panics fory == 0 (division by zero) but, unlike Div, it doesn't panic on aquotient overflow.
funcRem32¶added ingo1.14
Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panicsfor y == 0 (division by zero) but, unlikeDiv32, it doesn't panicon a quotient overflow.
funcRem64¶added ingo1.14
Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panicsfor y == 0 (division by zero) but, unlikeDiv64, it doesn't panicon a quotient overflow.
funcReverse16¶
Reverse16 returns the value of x with its bits in reversed order.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%016b\n", 19)fmt.Printf("%016b\n", bits.Reverse16(19))}
Output:00000000000100111100100000000000
funcReverse32¶
Reverse32 returns the value of x with its bits in reversed order.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%032b\n", 19)fmt.Printf("%032b\n", bits.Reverse32(19))}
Output:0000000000000000000000000001001111001000000000000000000000000000
funcReverse64¶
Reverse64 returns the value of x with its bits in reversed order.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%064b\n", 19)fmt.Printf("%064b\n", bits.Reverse64(19))}
Output:00000000000000000000000000000000000000000000000000000000000100111100100000000000000000000000000000000000000000000000000000000000
funcReverse8¶
Reverse8 returns the value of x with its bits in reversed order.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%08b\n", 19)fmt.Printf("%08b\n", bits.Reverse8(19))}
Output:0001001111001000
funcReverseBytes¶
ReverseBytes returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
funcReverseBytes16¶
ReverseBytes16 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%016b\n", 15)fmt.Printf("%016b\n", bits.ReverseBytes16(15))}
Output:00000000000011110000111100000000
funcReverseBytes32¶
ReverseBytes32 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%032b\n", 15)fmt.Printf("%032b\n", bits.ReverseBytes32(15))}
Output:0000000000000000000000000000111100001111000000000000000000000000
funcReverseBytes64¶
ReverseBytes64 returns the value of x with its bytes in reversed order.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%064b\n", 15)fmt.Printf("%064b\n", bits.ReverseBytes64(15))}
Output:00000000000000000000000000000000000000000000000000000000000011110000111100000000000000000000000000000000000000000000000000000000
funcRotateLeft¶
RotateLeft returns the value of x rotated left by (k modUintSize) bits.To rotate x right by k bits, call RotateLeft(x, -k).
This function's execution time does not depend on the inputs.
funcRotateLeft16¶
RotateLeft16 returns the value of x rotated left by (k mod 16) bits.To rotate x right by k bits, call RotateLeft16(x, -k).
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%016b\n", 15)fmt.Printf("%016b\n", bits.RotateLeft16(15, 2))fmt.Printf("%016b\n", bits.RotateLeft16(15, -2))}
Output:000000000000111100000000001111001100000000000011
funcRotateLeft32¶
RotateLeft32 returns the value of x rotated left by (k mod 32) bits.To rotate x right by k bits, call RotateLeft32(x, -k).
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%032b\n", 15)fmt.Printf("%032b\n", bits.RotateLeft32(15, 2))fmt.Printf("%032b\n", bits.RotateLeft32(15, -2))}
Output:000000000000000000000000000011110000000000000000000000000011110011000000000000000000000000000011
funcRotateLeft64¶
RotateLeft64 returns the value of x rotated left by (k mod 64) bits.To rotate x right by k bits, call RotateLeft64(x, -k).
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%064b\n", 15)fmt.Printf("%064b\n", bits.RotateLeft64(15, 2))fmt.Printf("%064b\n", bits.RotateLeft64(15, -2))}
Output:000000000000000000000000000000000000000000000000000000000000111100000000000000000000000000000000000000000000000000000000001111001100000000000000000000000000000000000000000000000000000000000011
funcRotateLeft8¶
RotateLeft8 returns the value of x rotated left by (k mod 8) bits.To rotate x right by k bits, call RotateLeft8(x, -k).
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("%08b\n", 15)fmt.Printf("%08b\n", bits.RotateLeft8(15, 2))fmt.Printf("%08b\n", bits.RotateLeft8(15, -2))}
Output:000011110011110011000011
funcSub¶added ingo1.12
Sub returns the difference of x, y and borrow: diff = x - y - borrow.The borrow input must be 0 or 1; otherwise the behavior is undefined.The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
funcSub32¶added ingo1.12
Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.The borrow input must be 0 or 1; otherwise the behavior is undefined.The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 33<<32 + 23n1 := []uint32{33, 23}// Second number is 21<<32 + 12n2 := []uint32{21, 12}// Sub them together without producing carry.d1, carry := bits.Sub32(n1[1], n2[1], 0)d0, _ := bits.Sub32(n1[0], n2[0], carry)nsum := []uint32{d0, d1}fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)// First number is 3<<32 + 2147483647n1 = []uint32{3, 0x7fffffff}// Second number is 1<<32 + 2147483648n2 = []uint32{1, 0x80000000}// Sub them together producing carry.d1, carry = bits.Sub32(n1[1], n2[1], 0)d0, _ = bits.Sub32(n1[0], n2[0], carry)nsum = []uint32{d0, d1}fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)}
Output:[33 23] - [21 12] = [12 11] (carry bit was 0)[3 2147483647] - [1 2147483648] = [1 4294967295] (carry bit was 1)
funcSub64¶added ingo1.12
Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.The borrow input must be 0 or 1; otherwise the behavior is undefined.The borrowOut output is guaranteed to be 0 or 1.
This function's execution time does not depend on the inputs.
Example¶
package mainimport ("fmt""math/bits")func main() {// First number is 33<<64 + 23n1 := []uint64{33, 23}// Second number is 21<<64 + 12n2 := []uint64{21, 12}// Sub them together without producing carry.d1, carry := bits.Sub64(n1[1], n2[1], 0)d0, _ := bits.Sub64(n1[0], n2[0], carry)nsum := []uint64{d0, d1}fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)// First number is 3<<64 + 9223372036854775807n1 = []uint64{3, 0x7fffffffffffffff}// Second number is 1<<64 + 9223372036854775808n2 = []uint64{1, 0x8000000000000000}// Sub them together producing carry.d1, carry = bits.Sub64(n1[1], n2[1], 0)d0, _ = bits.Sub64(n1[0], n2[0], carry)nsum = []uint64{d0, d1}fmt.Printf("%v - %v = %v (carry bit was %v)\n", n1, n2, nsum, carry)}
Output:[33 23] - [21 12] = [12 11] (carry bit was 0)[3 9223372036854775807] - [1 9223372036854775808] = [1 18446744073709551615] (carry bit was 1)
funcTrailingZeros¶
TrailingZeros returns the number of trailing zero bits in x; the result isUintSize for x == 0.
funcTrailingZeros16¶
TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("TrailingZeros16(%016b) = %d\n", 14, bits.TrailingZeros16(14))}
Output:TrailingZeros16(0000000000001110) = 1
funcTrailingZeros32¶
TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("TrailingZeros32(%032b) = %d\n", 14, bits.TrailingZeros32(14))}
Output:TrailingZeros32(00000000000000000000000000001110) = 1
funcTrailingZeros64¶
TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("TrailingZeros64(%064b) = %d\n", 14, bits.TrailingZeros64(14))}
Output:TrailingZeros64(0000000000000000000000000000000000000000000000000000000000001110) = 1
funcTrailingZeros8¶
TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
Example¶
package mainimport ("fmt""math/bits")func main() {fmt.Printf("TrailingZeros8(%08b) = %d\n", 14, bits.TrailingZeros8(14))}
Output:TrailingZeros8(00001110) = 1
Types¶
This section is empty.