math
packagestandard libraryThis package is not in the latest version of its module.
Details
Validgo.mod file
The Go module system was introduced in Go 1.11 and is the official dependency management solution for Go.
Redistributable license
Redistributable licenses place minimal restrictions on how software can be used, modified, and redistributed.
Tagged version
Modules with tagged versions give importers more predictable builds.
Stable version
When a project reaches major version v1 it is considered stable.
- Learn more about best practices
Repository
Links
Documentation¶
Overview¶
Package math provides basic constants and mathematical functions.
This package does not guarantee bit-identical results across architectures.
Index¶
- Constants
- func Abs(x float64) float64
- func Acos(x float64) float64
- func Acosh(x float64) float64
- func Asin(x float64) float64
- func Asinh(x float64) float64
- func Atan(x float64) float64
- func Atan2(y, x float64) float64
- func Atanh(x float64) float64
- func Cbrt(x float64) float64
- func Ceil(x float64) float64
- func Copysign(f, sign float64) float64
- func Cos(x float64) float64
- func Cosh(x float64) float64
- func Dim(x, y float64) float64
- func Erf(x float64) float64
- func Erfc(x float64) float64
- func Erfcinv(x float64) float64
- func Erfinv(x float64) float64
- func Exp(x float64) float64
- func Exp2(x float64) float64
- func Expm1(x float64) float64
- func FMA(x, y, z float64) float64
- func Float32bits(f float32) uint32
- func Float32frombits(b uint32) float32
- func Float64bits(f float64) uint64
- func Float64frombits(b uint64) float64
- func Floor(x float64) float64
- func Frexp(f float64) (frac float64, exp int)
- func Gamma(x float64) float64
- func Hypot(p, q float64) float64
- func Ilogb(x float64) int
- func Inf(sign int) float64
- func IsInf(f float64, sign int) bool
- func IsNaN(f float64) (is bool)
- func J0(x float64) float64
- func J1(x float64) float64
- func Jn(n int, x float64) float64
- func Ldexp(frac float64, exp int) float64
- func Lgamma(x float64) (lgamma float64, sign int)
- func Log(x float64) float64
- func Log10(x float64) float64
- func Log1p(x float64) float64
- func Log2(x float64) float64
- func Logb(x float64) float64
- func Max(x, y float64) float64
- func Min(x, y float64) float64
- func Mod(x, y float64) float64
- func Modf(f float64) (int float64, frac float64)
- func NaN() float64
- func Nextafter(x, y float64) (r float64)
- func Nextafter32(x, y float32) (r float32)
- func Pow(x, y float64) float64
- func Pow10(n int) float64
- func Remainder(x, y float64) float64
- func Round(x float64) float64
- func RoundToEven(x float64) float64
- func Signbit(x float64) bool
- func Sin(x float64) float64
- func Sincos(x float64) (sin, cos float64)
- func Sinh(x float64) float64
- func Sqrt(x float64) float64
- func Tan(x float64) float64
- func Tanh(x float64) float64
- func Trunc(x float64) float64
- func Y0(x float64) float64
- func Y1(x float64) float64
- func Yn(n int, x float64) float64
Examples¶
Constants¶
const (E = 2.71828182845904523536028747135266249775724709369995957496696763//https://oeis.org/A001113Pi = 3.14159265358979323846264338327950288419716939937510582097494459//https://oeis.org/A000796Phi = 1.61803398874989484820458683436563811772030917980576286213544862//https://oeis.org/A001622Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974//https://oeis.org/A002193SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931//https://oeis.org/A019774SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779//https://oeis.org/A002161SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038//https://oeis.org/A139339Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009//https://oeis.org/A002162Log2E = 1 /Ln2Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790//https://oeis.org/A002392Log10E = 1 /Ln10)
Mathematical constants.
const (MaxFloat32 = 0x1p127 * (1 + (1 - 0x1p-23))// 3.40282346638528859811704183484516925440e+38SmallestNonzeroFloat32 = 0x1p-126 * 0x1p-23// 1.401298464324817070923729583289916131280e-45MaxFloat64 = 0x1p1023 * (1 + (1 - 0x1p-52))// 1.79769313486231570814527423731704356798070e+308SmallestNonzeroFloat64 = 0x1p-1022 * 0x1p-52// 4.9406564584124654417656879286822137236505980e-324)
Floating-point limit values.Max is the largest finite value representable by the type.SmallestNonzero is the smallest positive, non-zero value representable by the type.
const (MaxInt = 1<<(intSize-1) - 1// MaxInt32 or MaxInt64 depending on intSize.MinInt = -1 << (intSize - 1)// MinInt32 or MinInt64 depending on intSize.MaxInt8 = 1<<7 - 1// 127MinInt8 = -1 << 7// -128MaxInt16 = 1<<15 - 1// 32767MinInt16 = -1 << 15// -32768MaxInt32 = 1<<31 - 1// 2147483647MinInt32 = -1 << 31// -2147483648MaxInt64 = 1<<63 - 1// 9223372036854775807MinInt64 = -1 << 63// -9223372036854775808MaxUint = 1<<intSize - 1// MaxUint32 or MaxUint64 depending on intSize.MaxUint8 = 1<<8 - 1// 255MaxUint16 = 1<<16 - 1// 65535MaxUint32 = 1<<32 - 1// 4294967295MaxUint64 = 1<<64 - 1// 18446744073709551615)
Integer limit values.
Variables¶
This section is empty.
Functions¶
funcAbs¶
Abs returns the absolute value of x.
Special cases are:
Abs(±Inf) = +InfAbs(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {x := math.Abs(-2)fmt.Printf("%.1f\n", x)y := math.Abs(2)fmt.Printf("%.1f\n", y)}
Output:2.02.0
funcAcos¶
Acos returns the arccosine, in radians, of x.
Special case is:
Acos(x) = NaN if x < -1 or x > 1
funcAcosh¶
Acosh returns the inverse hyperbolic cosine of x.
Special cases are:
Acosh(+Inf) = +InfAcosh(x) = NaN if x < 1Acosh(NaN) = NaN
funcAsin¶
Asin returns the arcsine, in radians, of x.
Special cases are:
Asin(±0) = ±0Asin(x) = NaN if x < -1 or x > 1
funcAsinh¶
Asinh returns the inverse hyperbolic sine of x.
Special cases are:
Asinh(±0) = ±0Asinh(±Inf) = ±InfAsinh(NaN) = NaN
funcAtan¶
Atan returns the arctangent, in radians, of x.
Special cases are:
Atan(±0) = ±0Atan(±Inf) = ±Pi/2
funcAtan2¶
Atan2 returns the arc tangent of y/x, usingthe signs of the two to determine the quadrantof the return value.
Special cases are (in order):
Atan2(y, NaN) = NaNAtan2(NaN, x) = NaNAtan2(+0, x>=0) = +0Atan2(-0, x>=0) = -0Atan2(+0, x<=-0) = +PiAtan2(-0, x<=-0) = -PiAtan2(y>0, 0) = +Pi/2Atan2(y<0, 0) = -Pi/2Atan2(+Inf, +Inf) = +Pi/4Atan2(-Inf, +Inf) = -Pi/4Atan2(+Inf, -Inf) = 3Pi/4Atan2(-Inf, -Inf) = -3Pi/4Atan2(y, +Inf) = 0Atan2(y>0, -Inf) = +PiAtan2(y<0, -Inf) = -PiAtan2(+Inf, x) = +Pi/2Atan2(-Inf, x) = -Pi/2
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f", math.Atan2(0, 0))}
Output:0.00
funcAtanh¶
Atanh returns the inverse hyperbolic tangent of x.
Special cases are:
Atanh(1) = +InfAtanh(±0) = ±0Atanh(-1) = -InfAtanh(x) = NaN if x < -1 or x > 1Atanh(NaN) = NaN
funcCbrt¶
Cbrt returns the cube root of x.
Special cases are:
Cbrt(±0) = ±0Cbrt(±Inf) = ±InfCbrt(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f\n", math.Cbrt(8))fmt.Printf("%.2f\n", math.Cbrt(27))}
Output:2.003.00
funcCeil¶
Ceil returns the least integer value greater than or equal to x.
Special cases are:
Ceil(±0) = ±0Ceil(±Inf) = ±InfCeil(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {c := math.Ceil(1.49)fmt.Printf("%.1f", c)}
Output:2.0
funcCopysign¶
Copysign returns a value with the magnitude of fand the sign of sign.
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f", math.Copysign(3.2, -1))}
Output:-3.20
funcCos¶
Cos returns the cosine of the radian argument x.
Special cases are:
Cos(±Inf) = NaNCos(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f", math.Cos(math.Pi/2))}
Output:0.00
funcCosh¶
Cosh returns the hyperbolic cosine of x.
Special cases are:
Cosh(±0) = 1Cosh(±Inf) = +InfCosh(NaN) = NaN
funcDim¶
Dim returns the maximum of x-y or 0.
Special cases are:
Dim(+Inf, +Inf) = NaNDim(-Inf, -Inf) = NaNDim(x, NaN) = Dim(NaN, x) = NaN
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f\n", math.Dim(4, -2))fmt.Printf("%.2f\n", math.Dim(-4, 2))}
Output:6.000.00
funcErf¶
Erf returns the error function of x.
Special cases are:
Erf(+Inf) = 1Erf(-Inf) = -1Erf(NaN) = NaN
funcErfc¶
Erfc returns the complementary error function of x.
Special cases are:
Erfc(+Inf) = 0Erfc(-Inf) = 2Erfc(NaN) = NaN
funcErfcinv¶added ingo1.10
Erfcinv returns the inverse ofErfc(x).
Special cases are:
Erfcinv(0) = +InfErfcinv(2) = -InfErfcinv(x) = NaN if x < 0 or x > 2Erfcinv(NaN) = NaN
funcErfinv¶added ingo1.10
Erfinv returns the inverse error function of x.
Special cases are:
Erfinv(1) = +InfErfinv(-1) = -InfErfinv(x) = NaN if x < -1 or x > 1Erfinv(NaN) = NaN
funcExp¶
Exp returns e**x, the base-e exponential of x.
Special cases are:
Exp(+Inf) = +InfExp(NaN) = NaN
Very large values overflow to 0 or +Inf.Very small values underflow to 1.
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f\n", math.Exp(1))fmt.Printf("%.2f\n", math.Exp(2))fmt.Printf("%.2f\n", math.Exp(-1))}
Output:2.727.390.37
funcExp2¶
Exp2 returns 2**x, the base-2 exponential of x.
Special cases are the same asExp.
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f\n", math.Exp2(1))fmt.Printf("%.2f\n", math.Exp2(-3))}
Output:2.000.12
funcExpm1¶
Expm1 returns e**x - 1, the base-e exponential of x minus 1.It is more accurate thanExp(x) - 1 when x is near zero.
Special cases are:
Expm1(+Inf) = +InfExpm1(-Inf) = -1Expm1(NaN) = NaN
Very large values overflow to -1 or +Inf.
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.6f\n", math.Expm1(0.01))fmt.Printf("%.6f\n", math.Expm1(-1))}
Output:0.010050-0.632121
funcFMA¶added ingo1.14
FMA returns x * y + z, computed with only one rounding.(That is, FMA returns the fused multiply-add of x, y, and z.)
funcFloat32bits¶
Float32bits returns the IEEE 754 binary representation of f,with the sign bit of f and the result in the same bit position.Float32bits(Float32frombits(x)) == x.
funcFloat32frombits¶
Float32frombits returns the floating-point number correspondingto the IEEE 754 binary representation b, with the sign bit of band the result in the same bit position.Float32frombits(Float32bits(x)) == x.
funcFloat64bits¶
Float64bits returns the IEEE 754 binary representation of f,with the sign bit of f and the result in the same bit position,and Float64bits(Float64frombits(x)) == x.
funcFloat64frombits¶
Float64frombits returns the floating-point number correspondingto the IEEE 754 binary representation b, with the sign bit of band the result in the same bit position.Float64frombits(Float64bits(x)) == x.
funcFloor¶
Floor returns the greatest integer value less than or equal to x.
Special cases are:
Floor(±0) = ±0Floor(±Inf) = ±InfFloor(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {c := math.Floor(1.51)fmt.Printf("%.1f", c)}
Output:1.0
funcFrexp¶
Frexp breaks f into a normalized fractionand an integral power of two.It returns frac and exp satisfying f == frac × 2**exp,with the absolute value of frac in the interval [½, 1).
Special cases are:
Frexp(±0) = ±0, 0Frexp(±Inf) = ±Inf, 0Frexp(NaN) = NaN, 0
funcGamma¶
Gamma returns the Gamma function of x.
Special cases are:
Gamma(+Inf) = +InfGamma(+0) = +InfGamma(-0) = -InfGamma(x) = NaN for integer x < 0Gamma(-Inf) = NaNGamma(NaN) = NaN
funcHypot¶
Hypot returnsSqrt(p*p + q*q), taking care to avoidunnecessary overflow and underflow.
Special cases are:
Hypot(±Inf, q) = +InfHypot(p, ±Inf) = +InfHypot(NaN, q) = NaNHypot(p, NaN) = NaN
funcIlogb¶
Ilogb returns the binary exponent of x as an integer.
Special cases are:
Ilogb(±Inf) = MaxInt32Ilogb(0) = MinInt32Ilogb(NaN) = MaxInt32
funcIsInf¶
IsInf reports whether f is an infinity, according to sign.If sign > 0, IsInf reports whether f is positive infinity.If sign < 0, IsInf reports whether f is negative infinity.If sign == 0, IsInf reports whether f is either infinity.
funcJ0¶
J0 returns the order-zero Bessel function of the first kind.
Special cases are:
J0(±Inf) = 0J0(0) = 1J0(NaN) = NaN
funcJ1¶
J1 returns the order-one Bessel function of the first kind.
Special cases are:
J1(±Inf) = 0J1(NaN) = NaN
funcJn¶
Jn returns the order-n Bessel function of the first kind.
Special cases are:
Jn(n, ±Inf) = 0Jn(n, NaN) = NaN
funcLdexp¶
Ldexp is the inverse ofFrexp.It returns frac × 2**exp.
Special cases are:
Ldexp(±0, exp) = ±0Ldexp(±Inf, exp) = ±InfLdexp(NaN, exp) = NaN
funcLgamma¶
Lgamma returns the natural logarithm and sign (-1 or +1) ofGamma(x).
Special cases are:
Lgamma(+Inf) = +InfLgamma(0) = +InfLgamma(-integer) = +InfLgamma(-Inf) = -InfLgamma(NaN) = NaN
funcLog¶
Log returns the natural logarithm of x.
Special cases are:
Log(+Inf) = +InfLog(0) = -InfLog(x < 0) = NaNLog(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {x := math.Log(1)fmt.Printf("%.1f\n", x)y := math.Log(2.7183)fmt.Printf("%.1f\n", y)}
Output:0.01.0
funcLog1p¶
Log1p returns the natural logarithm of 1 plus its argument x.It is more accurate thanLog(1 + x) when x is near zero.
Special cases are:
Log1p(+Inf) = +InfLog1p(±0) = ±0Log1p(-1) = -InfLog1p(x < -1) = NaNLog1p(NaN) = NaN
funcLogb¶
Logb returns the binary exponent of x.
Special cases are:
Logb(±Inf) = +InfLogb(0) = -InfLogb(NaN) = NaN
funcMax¶
Max returns the larger of x or y.
Special cases are:
Max(x, +Inf) = Max(+Inf, x) = +InfMax(x, NaN) = Max(NaN, x) = NaNMax(+0, ±0) = Max(±0, +0) = +0Max(-0, -0) = -0
Note that this differs from the built-in function max when calledwith NaN and +Inf.
funcMin¶
Min returns the smaller of x or y.
Special cases are:
Min(x, -Inf) = Min(-Inf, x) = -InfMin(x, NaN) = Min(NaN, x) = NaNMin(-0, ±0) = Min(±0, -0) = -0
Note that this differs from the built-in function min when calledwith NaN and -Inf.
funcMod¶
Mod returns the floating-point remainder of x/y.The magnitude of the result is less than y and itssign agrees with that of x.
Special cases are:
Mod(±Inf, y) = NaNMod(NaN, y) = NaNMod(x, 0) = NaNMod(x, ±Inf) = xMod(x, NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {c := math.Mod(7, 4)fmt.Printf("%.1f", c)}
Output:3.0
funcModf¶
Modf returns integer and fractional floating-point numbersthat sum to f. Both values have the same sign as f.
Special cases are:
Modf(±Inf) = ±Inf, NaNModf(NaN) = NaN, NaN
Example¶
package mainimport ("fmt""math")func main() {int, frac := math.Modf(3.14)fmt.Printf("%.2f, %.2f\n", int, frac)int, frac = math.Modf(-2.71)fmt.Printf("%.2f, %.2f\n", int, frac)}
Output:3.00, 0.14-2.00, -0.71
funcNextafter¶
Nextafter returns the next representable float64 value after x towards y.
Special cases are:
Nextafter(x, x) = xNextafter(NaN, y) = NaNNextafter(x, NaN) = NaN
funcNextafter32¶added ingo1.4
Nextafter32 returns the next representable float32 value after x towards y.
Special cases are:
Nextafter32(x, x) = xNextafter32(NaN, y) = NaNNextafter32(x, NaN) = NaN
funcPow¶
Pow returns x**y, the base-x exponential of y.
Special cases are (in order):
Pow(x, ±0) = 1 for any xPow(1, y) = 1 for any yPow(x, 1) = x for any xPow(NaN, y) = NaNPow(x, NaN) = NaNPow(±0, y) = ±Inf for y an odd integer < 0Pow(±0, -Inf) = +InfPow(±0, +Inf) = +0Pow(±0, y) = +Inf for finite y < 0 and not an odd integerPow(±0, y) = ±0 for y an odd integer > 0Pow(±0, y) = +0 for finite y > 0 and not an odd integerPow(-1, ±Inf) = 1Pow(x, +Inf) = +Inf for |x| > 1Pow(x, -Inf) = +0 for |x| > 1Pow(x, +Inf) = +0 for |x| < 1Pow(x, -Inf) = +Inf for |x| < 1Pow(+Inf, y) = +Inf for y > 0Pow(+Inf, y) = +0 for y < 0Pow(-Inf, y) = Pow(-0, -y)Pow(x, y) = NaN for finite x < 0 and finite non-integer y
Example¶
package mainimport ("fmt""math")func main() {c := math.Pow(2, 3)fmt.Printf("%.1f", c)}
Output:8.0
funcPow10¶
Pow10 returns 10**n, the base-10 exponential of n.
Special cases are:
Pow10(n) = 0 for n < -323Pow10(n) = +Inf for n > 308
Example¶
package mainimport ("fmt""math")func main() {c := math.Pow10(2)fmt.Printf("%.1f", c)}
Output:100.0
funcRemainder¶
Remainder returns the IEEE 754 floating-point remainder of x/y.
Special cases are:
Remainder(±Inf, y) = NaNRemainder(NaN, y) = NaNRemainder(x, 0) = NaNRemainder(x, ±Inf) = xRemainder(x, NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.1f", math.Remainder(100, 30))}
Output:10.0
funcRound¶added ingo1.10
Round returns the nearest integer, rounding half away from zero.
Special cases are:
Round(±0) = ±0Round(±Inf) = ±InfRound(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {p := math.Round(10.5)fmt.Printf("%.1f\n", p)n := math.Round(-10.5)fmt.Printf("%.1f\n", n)}
Output:11.0-11.0
funcRoundToEven¶added ingo1.10
RoundToEven returns the nearest integer, rounding ties to even.
Special cases are:
RoundToEven(±0) = ±0RoundToEven(±Inf) = ±InfRoundToEven(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {u := math.RoundToEven(11.5)fmt.Printf("%.1f\n", u)d := math.RoundToEven(12.5)fmt.Printf("%.1f\n", d)}
Output:12.012.0
funcSin¶
Sin returns the sine of the radian argument x.
Special cases are:
Sin(±0) = ±0Sin(±Inf) = NaNSin(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f", math.Sin(math.Pi))}
Output:0.00
funcSincos¶
Sincos returns Sin(x), Cos(x).
Special cases are:
Sincos(±0) = ±0, 1Sincos(±Inf) = NaN, NaNSincos(NaN) = NaN, NaN
Example¶
package mainimport ("fmt""math")func main() {sin, cos := math.Sincos(0)fmt.Printf("%.2f, %.2f", sin, cos)}
Output:0.00, 1.00
funcSinh¶
Sinh returns the hyperbolic sine of x.
Special cases are:
Sinh(±0) = ±0Sinh(±Inf) = ±InfSinh(NaN) = NaN
funcSqrt¶
Sqrt returns the square root of x.
Special cases are:
Sqrt(+Inf) = +InfSqrt(±0) = ±0Sqrt(x < 0) = NaNSqrt(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {const (a = 3b = 4)c := math.Sqrt(a*a + b*b)fmt.Printf("%.1f", c)}
Output:5.0
funcTan¶
Tan returns the tangent of the radian argument x.
Special cases are:
Tan(±0) = ±0Tan(±Inf) = NaNTan(NaN) = NaN
funcTanh¶
Tanh returns the hyperbolic tangent of x.
Special cases are:
Tanh(±0) = ±0Tanh(±Inf) = ±1Tanh(NaN) = NaN
funcTrunc¶
Trunc returns the integer value of x.
Special cases are:
Trunc(±0) = ±0Trunc(±Inf) = ±InfTrunc(NaN) = NaN
Example¶
package mainimport ("fmt""math")func main() {fmt.Printf("%.2f\n", math.Trunc(math.Pi))fmt.Printf("%.2f\n", math.Trunc(-1.2345))}
Output:3.00-1.00
funcY0¶
Y0 returns the order-zero Bessel function of the second kind.
Special cases are:
Y0(+Inf) = 0Y0(0) = -InfY0(x < 0) = NaNY0(NaN) = NaN
Types¶
This section is empty.
Source Files¶
- abs.go
- acosh.go
- asin.go
- asinh.go
- atan.go
- atan2.go
- atanh.go
- bits.go
- cbrt.go
- const.go
- copysign.go
- dim.go
- dim_asm.go
- erf.go
- erfinv.go
- exp.go
- exp2_noasm.go
- exp_amd64.go
- exp_asm.go
- expm1.go
- floor.go
- floor_asm.go
- fma.go
- frexp.go
- gamma.go
- hypot.go
- hypot_asm.go
- j0.go
- j1.go
- jn.go
- ldexp.go
- lgamma.go
- log.go
- log10.go
- log1p.go
- log_asm.go
- logb.go
- mod.go
- modf.go
- modf_noasm.go
- nextafter.go
- pow.go
- pow10.go
- remainder.go
- signbit.go
- sin.go
- sincos.go
- sinh.go
- sqrt.go
- stubs.go
- tan.go
- tanh.go
- trig_reduce.go
- unsafe.go
Directories¶
Path | Synopsis |
---|---|
Package big implements arbitrary-precision arithmetic (big numbers). | Package big implements arbitrary-precision arithmetic (big numbers). |
internal/asmgen Asmgen generates math/big assembly. | Asmgen generates math/big assembly. |
Package bits implements bit counting and manipulation functions for the predeclared unsigned integer types. | Package bits implements bit counting and manipulation functions for the predeclared unsigned integer types. |
Package cmplx provides basic constants and mathematical functions for complex numbers. | Package cmplx provides basic constants and mathematical functions for complex numbers. |
Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work. | Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work. |
v2 Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work. | Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work. |