Novelty and Inductive Generalization in Human Reinforcement Learning.Samuel J. Gershman &Yael Niv -2015 -Topics in Cognitive Science 7 (3):391-415.detailsIn reinforcement learning, a decision maker searching for the most rewarding option is often faced with the question: What is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: How can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and we describe an equivalence between the Bayesian model and (...) temporal difference learning algorithms that have been proposed as models of RL in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional RL algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty. (shrink)
The effects of induced positive and negative affect on Pavlovian-instrumental interactions.Isla Weber,Sam Zorowitz,Yael Niv &Daniel Bennett -2022 -Cognition and Emotion 36 (7):1343-1360.detailsAcross species, animals have an intrinsic drive to approach appetitive stimuli and to withdraw from aversive stimuli. In affective science, influential theories of emotion link positive affect with strengthened behavioural approach and negative affect with avoidance. Based on these theories, we predicted that individuals’ positive and negative affect levels should particularly influence their behaviour when innate Pavlovian approach/avoidance tendencies conflict with learned instrumental behaviours. Here, across two experiments – exploratory Experiment 1 (N = 91) and a preregistered confirmatory Experiment 2 (...) (N = 335) – we assessed how induced positive and negative affect influenced Pavlovian-instrumental interactions in a reward/punishment Go/No-Go task. Contrary to our hypotheses, we found no evidence for a main effect of positive/negative affect on either approach/avoidance behaviour or Pavlovian-instrumental interactions. However, we did find evidence that the effects of induced affect on behaviour were moderated by individual differences in self-reported behavioural inhibition and gender. Exploratory computational modelling analyses explained these demographic moderating effects as arising from positive correlations between demographic factors and individual differences in the strength of Pavlovian-instrumental interactions. These findings serve to sharpen our understanding of the effects of positive and negative affect on instrumental behaviour. (shrink)