Population transcriptomics with single‐cell resolution: A new field made possible by microfluidics.Charles Plessy,Linda Desbois,Teruo Fujii &Piero Carninci -2013 -Bioessays 35 (2):131-140.detailsTissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we (...) describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells. (shrink)
Long non‐coding RNA modifies chromatin.Alka Saxena &Piero Carninci -2011 -Bioessays 33 (11):830-839.detailsCommon themes are emerging in the molecular mechanisms of long non‐coding RNA‐mediated gene repression. Long non‐coding RNAs (lncRNAs) participate in targeted gene silencing through chromatin remodelling, nuclear reorganisation, formation of a silencing domain and precise control over the entry of genes into silent compartments. The similarities suggest that these are fundamental processes of transcription regulation governed by lncRNAs. These findings have paved the way for analogous investigations on other lncRNAs and chromatin remodelling enzymes. Here we discuss these common mechanisms and (...) provide our view on other molecules that warrant similar investigations. We also present our concepts on the possible mechanisms that may facilitate the exit of genes from the silencing domains and their potential therapeutic applications. Finally, we point to future areas of research and put forward our recommendations for improvements in resources and applications of existing technologies towards targeted outcomes in this active area of research. (shrink)