Movatterモバイル変換


[0]ホーム

URL:


PhilPapersPhilPeoplePhilArchivePhilEventsPhilJobs
Order:

1 filter applied
  1. Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil,Alaa M. Barhoom,Bassem S. Abu-Nasser,Musleh M. Musleh &Samy S. Abu-Naser -2019 -International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a (...) dataset for building energy performance. The main factors for input variables are: relative compactness, roof area, overall height, surface area, glazing are a, wall area, glazing area distribution of a building, orientation, and the output variables: heating and cooling loads of the building. The dataset used for training are the data published in the literature for various 768 residential buildings. The model was trained and validated, most important factors affecting heating load and cooling load are identified, and the accuracy for the validation was 99.60%. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   29 citations  
  2. Handwritten Signature Verification using Deep Learning. [REVIEW]Eman Alajrami,Belal A. M. Ashqar,Bassem S. Abu-Nasser,Ahmed J. Khalil,Musleh M. Musleh,Alaa M. Barhoom &Samy S. Abu-Naser -manuscript
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a (...) large number of documents. To overcome the drawbacks of offline signature verification, we have seen a growth in online biometric personal verification such as fingerprints, eye scan etc. In this paper we created CNN model using python for offline signature and after training and validating, the accuracy of testing was 99.70%. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   30 citations  
Export
Limit to items.
Filters





Configure languageshere.Sign in to use this feature.

Viewing options


Open Category Editor
Off-campus access
Using PhilPapers from home?

Create an account to enable off-campus access through your institution's proxy server or OpenAthens.


[8]ページ先頭

©2009-2025 Movatter.jp