Education Enhances the Acuity of the Nonverbal Approximate Number System.Manuela Piazza,Pierre Pica,Véronique Izard,Elizabeth Spelke &Stanislas Dehaene -2013 -Psychological Science 24 (4):p.detailsAll humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. (...) By comparing Mundurucú subjects with and without access to schooling, we found that education significantly enhances the acuity with which sets of concrete objects are estimated. These results indicate that culture and education have an important effect on basic number perception. We hypothesize that symbolic and nonsymbolic numerical thinking mutually enhance one another over the course of mathematics instruction. (shrink)
What is an (abstract) neural representation of quantity?Manuela Piazza &Veronique Izard -2009 -Behavioral and Brain Sciences 32 (3-4):348-349.detailsWe argue that Cohen Kadosh & Walsh's (CK&W's) definitions of neural coding and of abstract representations are overly shallow, influenced by classical cognitive psychology views of modularity and seriality of information processing, and incompatible with the current knowledge on principles of neural coding. As they stand, the proposed dichotomies are not very useful heuristic tools to guide our research towards a better understanding of the neural computations underlying the processing of numerical quantity in the parietal cortex.