Movatterモバイル変換


[0]ホーム

URL:


PhilPapersPhilPeoplePhilArchivePhilEventsPhilJobs

Ant Colony Optimization Using Common Social Information and Self-Memory

Complexity 2021:1-7 (2021)
  Copy   BIBTEX

Abstract

Ant colony optimization, which is one of the metaheuristics imitating real ant foraging behavior, is an effective method to find a solution for the traveling salesman problem. The rank-based ant system has been proposed as a developed version of the fundamental model AS of ACO. In the ASrank, since only ant agents that have found one of some excellent solutions are let to regulate the pheromone, the pheromone concentrates on a specific route. As a result, although the ASrank can find a relatively good solution in a short time, it has the disadvantage of being prone falling into a local solution because the pheromone concentrates on a specific route. This problem seems to come from the loss of diversity in route selection according to the rapid accumulation of pheromones to the specific routes. Some ACO models, not just the ASrank, also suffer from this problem of loss of diversity in route selection. It can be considered that the diversity of solutions as well as the selection of solutions is an important factor in the solution system by swarm intelligence such as ACO. In this paper, to solve this problem, we introduce the ant system using individual memories aiming to improve the ability to solve TSP while maintaining the diversity of the behavior of each ant. We apply the existing ACO algorithms and ASIM to some TSP benchmarks and compare the ability to solve TSP.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Cas: カニングアントを用いた aco の提案.Tsutsui Shigeyoshi -2007 -Transactions of the Japanese Society for Artificial Intelligence 22 (1):29-36.
Is the ant colony a conscious organism?Anderson Fonseca -2023 -Griot : Revista de Filosofia 23 (1):70-86.

Analytics

Added to PP
2021-01-09

Downloads
48 (#509,046)

6 months
4 (#1,002,479)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references


[8]ページ先頭

©2009-2025 Movatter.jp